PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fractionation of Cadmium, Lead and Copper in Municipal Solid Waste Incineration Bottom Ash

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The basic physicochemical properties such as: dry mass, pH, pseudo-total content of cadmium, lead and copper, were determined in the fresh bottom ash samples from a municipal waste incineration plant. In order to study fractional composition of the investigated heavy metals, the BCR method was used (F1 – acid soluble and exchangeable fraction, F2 – reducible fraction, F3 – oxidizable fraction, F4 – residual fraction). The average percentage of cadmium in particular fractions was as follows: F1 (37.5%) > F4 (27.2%) > F2 (25.3%) > F3 (10.0%), for lead: F4 (36.5%) > F2(27.2%) > F3(23.4%) > F1(12.9%), and in the case of copper F4(66.3%) > F3(22.1%) > F2(7.4%) > F1(4.2%). Among the studied metals, in mobile pool (F1-F3) the highest amount of cadmium was noted (72.8%); for lead it was 63.5%, and for copper 33.7% of the pseudo-total content.
Słowa kluczowe
Rocznik
Strony
112--116
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Institute of Environmental Engineering and Energy Production, Department of Technology in Environmental Engineering, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
  • Doctoral student at Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
Bibliografia
  • 1. Chimenos J.M., Segarra M.. Fernandez M.A., Espiell F. 1999. Characterization of the bottom ash in municipal solid waste incinerator. Journal of Hazardous Materials, 64, 211–222.
  • 2. Dijkstra J.J., van der Sloot H. A., Comans R.N.J. 2006. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 21, 335–351.
  • 3. Dou X., Ren F., Nguyen M.Q., Ahamed A., Yijn K., Chan W.P., Chang V. W-C. 2017. Review of MSWI bottom ash utilization from perspectives of collective characterization, treatment and existing application. Renewable and Sustainable Energy Reviews, 79, 24–38.
  • 4. Gonzales M.L., Blanc D., de Brauer C. 2019. Multi-Analytical approach and geochemical modeling for mineral trace element speciation in MSWI bottom-ash. Waste and Biomass Valorization, 10, 547–560.
  • 5. Haberl J., Schuster M. 2019. Solubility of elements in waste incineration fly ash and bottom ash under various leaching conditions studied by a sequential extraction procedure. Waste Management, 87, 268–278.
  • 6. Husár J., Haydary J., Šuhaj P., Steltenpohl P. 2019. Potential of tire pyrolysis char as tar-cracking catalyst in solid waste and biomass gasification. Chemical Papers, 73, 2091–2101.
  • 7. Joseph A.M., Snellings R., Van den Heede P., Matthys S., De Belie N. 2018. The use of municipal solid waste incineration ash in various building materials: a Belgian point of view. Materials, 11, 141–171.
  • 8. Ke C., Ma X., Tang Y., Zheng W., Wu Z. 2017. The volatilization of heavy metals during co-combustion of food waste and polyvinyl chloride in air and carbon dioxide/oxygen atmosphere. Bioresource Technology 244, 1024–1030.
  • 9. Kouassi N.L.B., Yao K.M., Trokourey A., Soro M.B. 2014. Preliminary assessment of cadmium mobility in surface sediments of a tropical estuary. Bulletin of the Chemical Society of Ethiopia, 28(2), 245–254.
  • 10. Łukowski A. 2017. Fractionation of heavy metals (Pb, Cr and Cd) in municipal sewage sludges from Podlasie Province. Journal of Ecological Engineering, 18(1), 132–138.
  • 11. Nagendra B., Lakshmisha A., Agarwal P. 2019. Mobile application in municipal waste tracking: a pilot study of “PAC waste tracker” in Bangalore city. India. Journal of Material Cycles and Waste Management, 21, 705–712.
  • 12. Pöykiö R., Mäkelä M., Watkins G., Nurmesmeni H., Dahl O. 2016. Heavy metals leaching in bottom ash and fly ash fractions from industrial-scale BFB-boiler for environmental risks assessment. Transactions of Nonferrous Metals Society of China, 26, 256–264.
  • 13. Quek A., Xu W., Guo L., Wu D. 2016. Heavy metal removal from incineration bottom ash through washing with rainwater and seawater. International Journal of Waste Resources, 6(1), doi:10.4172/2252–5211.1000203
  • 14. Raharjo S., Matsumoto T., Ihsan T., Rachman I., Gustin L. 2017. Community-based solid waste bank program for municipal solid waste management improvement in Indonesia: a case study of Padang city. Journal of Material Cycles and Waste Management, 19, 201–212.
  • 15. Wielgosiński G., Wasiak D., Zawadzka A. 2014. The use of sequential extraction for assessing environmental risks of waste incineration bottom ash. Ecological Chemistry and Engineering, 21(3), 413–423.
  • 16. Wiles C. C. 1996. Municipal solid waste combustion ash: state-of-the-knowledge. Journal of Hazardous Materials, 47, 325–344.
  • 17. Yao J., Kong Q., Zhu H., Long Y., Shen D. 2013. Content and fractionation of Cu, Zn and Cd in size fractionated municipal solid waste incineration bottom ash. Ecotoxicology and Environmental Safety, 94, 131–137.
  • 18. Yao J., Li W., Kong Q., Xia F., Shen D. 2012. Effect of weathering on the mobility of zinc in municipal solid waste incinerator bottom ash. Fuel, 93, 99–104.
  • 19. Yao J., Li W., Xia F., Wang J., Fang C., Shen D. 2011. Investigation of Cu leaching from municipal solid waste incinerator bottom ash with a comprehensive approach. Frontiers in Energy, 5(3), 340–348.
  • 20. Yao J., Li W., Kong Q., Wu Y., He R., Shen D. 2010 Content, mobility and transfer behavior of heavy metals in MSWI bottom ash in Zhejiang province, China. Fuel, 89, 616–622.
  • 21. Zhou L., Guo H., Wang X., Chu M., Zhang G., Zhang L. 2019. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis. International Journal of Coal Science & Technology, 6(2), 235–246.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-249297a8-1c8e-480a-b048-1087ceb58a0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.