PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Human-induced force reconstruction using a non-linear electrodynamic shaker applying an iterative neural network algorithm

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
An iterative neural network framework is proposed in this paper for the human-induced Ground Reaction Forces (GRF) replication with an inertial electrodynamic mass actuator (APS 400). This is a first approach to the systematization of dynamic load tests on structures in a purely objective, repeatable and pedestrian-independent basis. Therefore, an inversion-free offline algorithm based on Machine Learning techniques has been applied for the first time on an electrodynamic shaker, without requiring its inverse model to tackle the inverse problem of successful force reconstruction. The proposed approach aims to obtain the optimal drive signal to minimize the error between the experimental shaker output and the reference force signal, measured with a pair of instrumented insoles (Loadsol©) for human bouncing at different fre- quencies and amplitudes. The optimal performance, stability and convergence of the system are verified through experimental tests, achieving excellent results in both time and frequency domain.
Rocznik
Strony
art. no. e144615
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
  • ITAP. Escuela de Ingenierías Industriales. Universidad de Valladolid. P.º del Cauce, 59, 47011 Valladolid, Spain
  • ITAP. Escuela de Ingenierías Industriales. Universidad de Valladolid. P.º del Cauce, 59, 47011 Valladolid, Spain
  • Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain
  • ITAP. Escuela de Ingenierías Industriales. Universidad de Valladolid. P.º del Cauce, 59, 47011 Valladolid, Spain
Bibliografia
  • [1] S. Živanović, I. Diaz, and A. Pavić, “Influence of walking and standing crowds on structural dynamic properties,” in Proceeding of conference & exposition on structural dynamics (IMAC XXVII), 2009.
  • [2] G. Busca, A. Cappellini, S. Manzoni, M. Tarabini, and M. Vanali, “Quantification of changes in modal parameters due to the presence of passive people on a slender structure,” J. Sound Vibr., vol. 333, no. 21, pp. 5641–5652, 2014.
  • [3] C.Y. Tuan and W.E. Saul, “Loads due to spectator movements,” J. Struct. Eng., vol. 111, no. 2, pp. 418–434, 1985.
  • [4] M.A. Peres, R.W. Bono, and D.L. Brown, “Practical aspects of shaker measurements for modal testing,” in Proceedings of ISMA, 2010, pp. 2539–2550.
  • [5] A. Saraswat and N. Tiwari, “Modeling and study of nonlinear effects in electrodynamic shakers,” Mech. Syst. Signal Proc., vol. 85, pp. 162–176, 2017.
  • [6] C.M. Casado, I.M. Díaz, J. de Sebastián, A.V. Poncela, and A. Lorenzana, “Implementation of passive and active vibration control on an in-service footbridge,” Struct. Control. Health Monit., vol. 20, no. 1, pp. 70–87, 2013.
  • [7] W. Guo, P. Shao, H.-y. Li, Y. Long, and J.-f. Mao, “Accuracy assessment of shake table device on strong earthquake output,” Adv. Civ. Eng., vol. 2019, p. 9372505, 2019.
  • [8] G. Shen, G.-M. Lv, Z.-M. Ye, D.-C. Cong, and J.-W. Han, “Implementation of electrohydraulic shaking table controllers with a combined adaptive inverse control and minimal control synthesis algorithm,” IET Contr. Theory Appl., vol. 5, no. 13, pp. 1471–1483, 2011.
  • [9] T. Yachun, P. Peng, Z. Dongbin, and Z. Yi, “A two-loop control method for shaking table tests combining model reference adaptive control and three-variable control,” Front. Built Environ., vol. 4, p. 54, 2018.
  • [10] D.P. Stoten and E.G. Gómez, “Adaptive control of shaking tables using the minimal control synthesis algorithm,” Philos. Trans. R. Soc. Lond. Ser. A-Math. Phys. Eng. Sci., vol. 359, no. 1786, pp. 1697–1723, 2001.
  • [11] X. Yu, B. Li, W. He, Y. Feng, L. Cheng, and C. Silvestre, “Adaptive-constrained impedance control for human-robot co-transportation,” IEEE Trans. Cybern., vol. 52, no. 12, pp. 13 237–13 249, 2022.
  • [12] J.T. Vughuma and O. Verlinden, “Control algorithm for an active ankle-foot orthosis (aafos) adaptative admittance control,” in Proceedings of the 2019 6th International Conference on Biomedical and Bioinformatics Engineering, 2019, pp. 91–98.
  • [13] L. Almeida, V. Santos, and J.P. Ferreira, “Improved humanoid gait using learning-based analysis of a new wearable 3d force system: Work programme,” in 2019 14th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 2019, pp. 1–4.
  • [14] X. Yu, W. He, Q. Li, Y. Li, and B. Li, “Human-robot co-carrying using visual and force sensing,” IEEE Trans. Ind. Electron., vol. 68, no. 9, pp. 8657–8666, 2020.
  • [15] H.-S. Ahn, Y. Chen, and K.L. Moore, “Iterative learning control: Brief survey and categorization,” IEEE Trans. Syst. Man Cybern. Part C-Appl. Rev., vol. 37, no. 6, pp. 1099–1121, 2007.
  • [16] D.A. Bristow, M. Tharayil, and A.G. Alleyne, “A survey of iterative learning control,” IEEE Control Syst. Mag., vol. 26, no. 3, pp. 96–114, 2006.
  • [17] Y. Tang, G. Shen, Z.-C. Zhu, X. Li, and C.-F. Yang, “Time waveform replication for electro-hydraulic shaking table incorporating off-line iterative learning control and modified internal model control,” Proc. Inst. Mech. Eng. Part I-J Syst Control Eng., vol. 228, no. 9, pp. 722–733, 2014.
  • [18] K. Seki and M. Iwasaki, “Modeling and disturbance compensation aided by multibody dynamics analysis in shaking table systems,” Mech. Eng. J., vol. 2, no. 5, pp. 15–00 274, 2015.
  • [19] Y. Tian, T. Wang, Y. Shi, Q. Han, and P. Pan, “Offline iterative control method using frequency-splitting to drive double-layer shaking tables,” Mech. Syst. Signal Process., vol. 152, p. 107443, 2021.
  • [20] B. Widrow, “Adaptive inverse control,” in Adaptive Systems in Control and Signal Processing 1986. Elsevier, 1987, pp. 1–5.
  • [21] L. Silverman, “Inversion of multivariable linear systems,” IEEE Trans. Autom. Control, vol. 14, 3, pp. 270–276, 1969.
  • [22] S. Devasia, D. Chen, and B. Paden., “Nonlinear inversion-based output tracking,” IEEE Trans. Autom. Control, vol. 41, 7, pp. 930–942, 1996.
  • [23] K. Kinosita, T. Sogo, and N. Adachi, “Iterative learning control using adjoint systems and stable inversion,” Asian J. Control, vol. 4, pp. 60–67, 2002.
  • [24] D. Meng and K.L. Moore, “Robust iterative learning control for nonrepetitive uncertain systems,” IEEE Trans. Autom. Control, vol. 62, no. 2, pp. 907–913, 2016.
  • [25] K.-S. Kim and Q. Zou, “A modeling-free inversion-based iterative feedforward control for precision output tracking of linear time-invariant systems,” IEEE-ASME Trans. Mechatron., vol. 18, no. 6, pp. 1767–1777, 2012.
  • [26] X. Yu, Z. Hou, M. M. Polycarpou, and L. Duan, “Data-driven iterative learning control for nonlinear discrete-time mimo systems,” IEEE Trans. Neural Netw. Learn. Syst., vol. 32, no. 3, pp. 1136–1148, 2020.
  • [27] Y. Chen, W. Jiang, and T. Charalambous, “Machine learning based iterative learning control for non-repetitive time-varying systems,” arXiv preprint arXiv:2107.00421, 2021.
  • [28] W. Liu, L. Cheng, Z.-G. Hou, J. Yu, and M. Tan, “An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model,” IEEE-ASME Trans. Mechatron., vol. 21, no. 1, pp. 214–226, 2015.
  • [29] S.P. Diwan and S.S. Deshpande, “Computationally efficient non-linear model predictive controller using parallel particle swarm optimization,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 70, no. 4, p. e140696, 2022.
  • [30] A.T. Peebles, K.R. Ford, J.B. Taylor, J.M. Hart, L.P. Sands, and R.M. Queen, “Using force sensing insoles to predict kinetic knee symmetry during a stop jump,” J. Biomech., vol. 95, p. 109293, 2019.
  • [31] K.E. Renner, D.B. Williams, and R.M. Queen, “The reliability and validity of the loadsol® under various walking and running conditions,” Sensors, vol. 19, no. 2, p. 265, 2019.
  • [32] W. Seiberl, E. Jensen, J. Merker, M. Leitel, and A. Schwirtz, “Accuracy and precision of loadsol® insole force-sensors for the quantification of ground reaction force-based biomechanical running parameters,” Eur. J. Sports Sci., vol. 18, no. 8, pp. 1100–1109, 2018.
  • [33] G.T. Burns, J. Deneweth Zendler, and R.F. Zernicke, “Validation of a wireless shoe insole for ground reaction force measurement,” J. Sports Sci., vol. 37, no. 10, pp. 1129–1138, 2019.
  • [34] J.C. Principe, N.R. Euliano, and W.C. Lefebvre, Neural and adaptive systems: fundamentals through simulations with CD-ROM. John Wiley & Sons, Inc., 1999.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-249159b6-1761-4041-b5b3-a0cbee7c3735
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.