PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

PEO layers on Mg-based metallic glass to control hydrogen evolution rate

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The amorphous Mg-based alloys may be used as metallic biomaterials for resorbable orthopedic implants. The Mg-Zn-Ca metallic glasses demonstrate variable in time degradation rate in simulated body fluid. In this work the Mg66Zn30Ca4 alloy was chosen as a substrate for coatings. This paper reports on the surface modification of a Mg66Zn30Ca4 metallic glass by plasma electrolytic oxidation (PEO). The structure characterization of uncoated Mg66Zn30Ca4 alloy was performed by using TEMand XRD method. The immersion tests of coated and uncoated Mg66Zn30Ca4 alloy were carried out in Ringer’s solutionat 37°C. The volume of released hydrogen by immersion tests was determined. The coatings structure and chemical composition after immersion tests by SEM/EDS were studied. Based on SEM images of surface structure samples, immersion tests results and hydrogen evolution measurement was proposed the course of corrosion process in Ringer’s solution for Mg-based metallic glasses with PEO coating. Results of immersion tests in Ringer’s solution allowed to determine the amount of evolved hydrogen in a function of time for Mg66Zn30Ca4 metallic glass and sample with PEO coating. In comparison to the non-coated Mg66Zn30Ca4 alloy, the sample with PEO layer showed a significantly decreased hydrogen evolution volume.
Rocznik
Strony
119--124
Opis fizyczny
Bibliogr. 23 poz., rys., wykr.
Twórcy
  • Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, Silesian University of Technology
  • Faculty of Chemistry, Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology
Bibliografia
  • [1] R. Nowosielski and K. Cesarz-Andraczke, “Impact of Zn and Ca on dissolution rate, mechanical properties and GFA of resorbable Mg-Zn-Ca metallic glasses”, Arch. Civ. Mech. Eng. 18, 1‒11 (2018).
  • [2] S.C. Cagan, M. Aci, B.B. Buldum, and C. Aci, “Artificial neural networks in mechanical surface enhancement technique for the prediction of surface roughness and microhardness of magnesium alloy”, Bull. Pol. Ac.: Tech. 67(4), 729‒739 (2019).
  • [3] M. Jurczyk, ”The progress of nanocrystalline hydride electrode materials”, Bull. Pol. Ac.: Tech. 52(1), 67‒77, 2004.
  • [4] R. Pampuch, “New materials and technologies”, Bull. Pol. Ac.: Tech. 52(4), 275‒282, 2004.
  • [5] P. Dudek, A. Fajkiel, T. Reguła, and K. Saja, “Selected problems of a technology of the AZ91 magnesium alloy melt treatment”, Research of Institute of Foundry 1, 27‒42, 2009.
  • [6] B. Deepa, S. Prabhu, G. Dhamotharan, G. Sathishkumar, P. Gopalakrishnan, and K.R. Ravi, “Stress corrosion cracking of biodegradable Mg-4Zn alloy in simulated body fluid at different strain rates – A fractographic investigation”, Mater. Sci. Eng. A 730, 354‒366, 2018.
  • [7] Y. Min, L. Debao, Z. Runfang, and C. Minfang, “Microstructure and Properties of Mg-3Zn-0.2Ca Alloy for Biomedical Application”, Rare Metal Mat. Eng. 47(1), 93‒98, 2018.
  • [8] A. Monfared, A. Ghaee, and S. Ebrahimi-Barough, “Preparation and characterization of crystallized and relaxed amorphous Mg-Zn-Ca alloy ribbons for nerve regeneration application”, J. Non-Cryst. Solids 489(1),71‒76, 2018.
  • [9] K. Seo-Young, K. Yu-Kyoung, Y. Kwang-kyun, L. Kwang-Bok, and L. Min-ho, “Determination of ideal Mg–35Zn–xCa alloy depending on Ca concentration for biomaterials”, J. Alloy. Compd. 766, 994‒1002, 2018.
  • [10] S. Lesz, J. Kraczla, and R. Nowosielski, “Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications”, Arch. Civ. Mech. Eng. 18(4), 1288‒1299, 2018.
  • [11] H. Guanping, W. Yuanhao, Z. Yu, Z. Ye, L. Yang, L. Nan, L. Mei, Z. Guan, H. Baohua, Y. Qingshui, Y. Zheng, and M. Chuanbin, “Addition of Zn to the ternary Mg-Ca-Sr alloys significantly improves their antibacterial property”, J. Mat. Chem. B Materials for Biology and Medicine 3(32), 6676–6689, 2015.
  • [12] W. Jingfeng, M. Yao, G. Shengfeng, J. Weiyan, and L. Qingshan, “Effect of Sr on the microstructure and biodegradable behavior of Mg–Zn–Ca-Mn alloys for implant application”, Mater. Des. 153(5), 308‒316, 2018.
  • [13] D. Wenbo, L. Ke, M. Ke, W. Zhaohui, and L. Shubo, “Effects of trace Ca/Sn addition on corrosion behaviors of biodegradable Mg–4Zn–0.2Mn alloy”, Journal of Magnesium and Alloys 6(1), 1‒14, 2018.
  • [14] D. Zhang, Z. Qi, B. Wei, and Z. Wang, “Low temperature thermal oxidation towards hafnium-coated magnesium alloy for biomedical application”, Mater. Letters 190(1), 181‒184, 2017.
  • [15] N. Van Phuong, M. Gupta, and S. Moon, “Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy”, Trans. Nonferrous Met. Soc. China, 27(5), 1087‒1095, 2017.
  • [16] G. Pazini Abatti, A. T. Nunes Pires, A. Spinelli, N. Scharnagl, and T.F. da Conceição, “Conversion coating on magnesium alloy sheet (AZ31) by vanillic acid treatment: Preparation, characterization and corrosion behavior”, J. Alloy. Compd. 738, 224‒232, 2018.
  • [17] G.J. Owens, R.K. Singh, F. Foroutan, M. Alqaysi, C. MinHan, C. Mahapatra, H. Kim, and J.C. Knowles, “Sol–gel based materials for biomedical applications”, Prog. Mater. Sci. 77, 1–79, 2016.
  • [18] S. Hariprasad, S. Gowtham, S. Arun, M. Ashok, and N. Rameshbabu, “Fabrication of duplex coatings on biodegradable AZ31 magnesium alloy by integrating cerium conversion (CC) and plasma electrolytic oxidation (PEO) processes”, J. Alloy. Compd. 722, 698‒715, 2017.
  • [19] Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, and N. Valizade, “Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications”, Journal of Magnesium and Alloys 5(1), 74‒132, 2017.
  • [20] W. Li, Sh. Guan, J. Chen, J. Hu, Sh. Chen, L. Wang, and Sh. Zhu, “Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradable Mg–Zn–Ca alloy”, Mater. Charact. 62, 1158‒1165, 2011.
  • [21] P. Liu, X. Pan, W. Yang, K. Cai, and Y. Chen, “Improved anticorrosion of magnesium alloy via layer-by-layer self-assembly technique combined with micro-arc oxidation”, Mater. Letter. 75, 118–121, 2012.
  • [22] X. Gu, Y. Zheng, S. Zhong, T. Xi, J. Wang, and W. Wang, “Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses”, Biomaterials 31, 1093–1104, 2010.
  • [23] M. Datta, D. Chou, D. Hong, P. Saha, S. Chung, B. Lee, A. Sirinterlikci, M. Ramanathan, A. Roy, and P.N. Kumta, “Structure and thermal stability of biodegradable Mg–Zn–Ca based amorphous alloys synthesized by mechanical alloying”, Mater. Sci. Eng. B 176, 1637–1643, 2011.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24902e67-7595-4785-8811-098a0c3e7870
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.