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Abstract

This paper presents the classic approach to minimum drag shape body problem, moving at
hypersonic speeds, leading to famous power law shapes with value of the exponent of 3

4
. Two-

and three-dimensional cases are considered. Furthermore, an exact pseudo solution is given and
its uselessness is discussed. Two new solutions are introduced, namely an approximate solution
due to form of the functional and solution by means of optimisation of a Bézier curve. The
former transforms the variational problem to the classic problem of function optimisation by
assuming certain class of functions, whereas the latter by means of discretised functional.

Keywords: Minimum drag; Variational calculus; Optimisation

Nomenclature

A – reference area
C – constant, crossover probability
cd – drag coefficient
cp – pressure coefficient
F – scale parameter
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g – global optimum
H – Heaviside step function
J – functional
K – vector
L – curve
n – exponent
N – population size
nmax – total number of iterartion
n̂ – normal unit vector
p – pressure
Rx – drag force
R – total force exerted on a body
S – body’s surface
U – velocity magnitude
x, y, z – independent variables
x, y – points

Greek symbols

α – angle
ρ – density

Other symbols

(.)’, (.)” – first and second derivative

1 Problem formulation

Figure 1 presents a moving object in steady, inviscid and incompressible fluid at
a constant speed U . Resistance is considered only on the peripheral of a moving
object. Two cases are considered here, namely two-dimensional and three-dimen-
sional. The shape of the body is symmetrical with respect to the x-axis, while in
the latter one deals with an axial-symmetry with respect to the same axis.

2 Fluid Resistance

2.1 Drag force

Drag force is the components, directed towards the body velocity, of the total
force, R, exerted on the moving body by the fluid. Formally, the total force is
defined by means of a surface integral of stress vector over a considered body’s
surface, S. In the absence of viscous (tangential) stresses this can be expressed
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Figure 1: Body moving at hypersonic speeds.

by means of the normal stresses contribution [10]

R = −
∫∫

S
(p − p∞)n̂ dS , (1)

where p∞ is the free stream pressure.
For further consideration it is necessary to specify a unit normal vector n̂ to

the surface S. If the surface S is given explicitly S := {(x, y, z)|z = f(x, y)} or
implicitly S := {(x, y, z)|F (x, y, z) := f(x, y)− z = 0}, the unit normal vector is

n̂ = − ∇F
|∇F | =

(−zx,−zy, 1)
√

1 + z2x + z2y

, (2)

where the subscripts x and y denotes derivative respect to x- and y-axis, re-
spectively. The above formula takes simpler form for both: two-dimensional and
three-dimensional axisymmetric case

n̂ =
(−y′, 1)
√

1 + y′2
, (3)

where the unit normal vector n̂ applies to the curve L given by L := {(x, y)|y =
f(x)} or L := {(x, y)|F (x, y) := f(x) − y = 0}, and symbol prim (’) refers
derivative respect to x-axis.

2.2 Pressure coefficients and its approximation

In order to determine drag force it is necessary to know the distribution of pres-
sure difference p− p∞. The pressure may be determined when, for instance, the
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pressure coefficient distribution is known

cp :=
p− p∞
1
2ρU

2
∞

, (4)

where U∞ is the free stream velocity. The Newtonian approximation for the
distribution of pressure coefficient is given by [1, 2, 4]

cp = 2 sin2 α , (5)

where α denotes the angle between free stream velocity and tangent to body
surface and together with definition (4) yields p− p∞ = ρU2

∞ sin2 α. This makes
it possible to determine the optimal shape of a body moving in inviscid fluid in
the sense of minimum drag.

Historically, the first calculations of a minimum drag body was performed by
Newton [7]. The assumption is that the body is moving at high speeds, corre-
sponding to hypersonic air flows, so the inertia forces are large enough. Newton’s
law of resistance neglects viscous forces, resulting in the local resisting pressure
being proportional to the square of the free-stream velocity [2]. What is more,
at hypersonic speeds oblique shock waves resembles flows assumed by Newton for
the free-stream Mach number larger then 1 [2]. Provided that the curvature of
the body is small, Eq. (5) is also valid for the pressure coefficient at the surface
of the body. This, however, does not have to be true when the curvature of the
body is large as the centrifugal forces between the shock and the surface may
play important role [2]. Experimental results [1, 2, 5] indicate good agreement
with theoretical prediction based on the pressure coefficient Eq. (5).

3 Two-dimensional problem

In the case of two-dimensional flows Eq. (1) is reduced to the following form:

R = −
∫

L
(p − p∞)n̂ dL = −ρU2

∞

∫

L
n̂ sin2 α dL , (6)

where the curve L starts from the point (0, 0) and ends at (x0, y0), see Fig. 1.
From the same figure arises another geometrical relation, namely

sinα =
dy

√

dx2 + dy2
=

y′
√

1 + y′2
. (7)

In order to convert curvilinear integral to single integral it is necessary to take
advantage of arc differential dL =

√

1 + y′2 dx.
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Drag force Rx comes directly from Eqs. (6), (3) and (7)

Rx = ρU2
∞

∫ x0

0

y′3

1 + y′2
dx (8)

and can be interpreted as a certain functional J . The specific value of that
functional depends on a curve of interest y. A constant value ρU2

∞ is regarded
here as a multiplier. This leads to the following form of this functional:

J [y] :=

∫ x0

0

y′3

1 + y′2
dx =

∫ x0

0
F (y, y′) dx . (9)

The necessary condition for the optimum of the functional J results in the Euler
equation [3]

Fy −
d

dx
Fy′ = 0 , (10)

where the subscripts y and y′ refer to the function y describing minimum drag
shape body and its the derivative, respectively. From the Euler equation (10),
for the functional J we obtain an ordinary differential equation y′y′′(y′2 − 3) = 0
(where the prime and double primes symbols are the first and second derivatives
of y with respect to x-axis). There are four solutions to this equation. The
first trivial solution y = C1 (where C1 is a constant) does not fulfil boundary
conditions. For a specific case when C1 = 0 and y(x) = 0 one obtains a solution
characterised by zero drag. The second and third solutions, namely y(x) = C1 ±√
3x, do not fulfil one boundary condition in general. For instance, if y(0) = 0

then C1 = 0 and it is typically impossible to fulfil y(x0) = y0. The fourth
solution y(x) = C1+C2x satisfies both boundary conditions y(0) = 0, y(x0) = y0.
Constants are determined to be C1 = 0, C2 = y0x

−1
0 . This results in the following

solution:
y

y0
=

x

x0
. (11)

Introducing dimensionless variables x+ = xx−1
0 and y+ = y y−1

0 we have some-
what simpler form y+ = x+. The above solutions is shown in Fig. 2. It is simply
a straight line. Furthermore, an isosceles triangle is a two-dimensional body of
a minimum drag.
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Figure 2: Optimal shapes.

4 Three-dimensional problem

4.1 Functional and Euler equation

In the case of two-dimensional surfaces S of revolutions Eq. (1) is reduced to the
following form:

R = −2π

∫

L
(p− p∞)n̂y dL , (12)

where the curve L is peripheral of surface S. Equation (12) is valid for axisym-
metric problems. This results in different drag force equation in comparison with
Eq. (8)

Rx := 2πρU2
∞

∫ x0

0

y′3y

1 + y′2
dx. (13)

Neglecting constant multiplier 2πρU2
∞ makes it now possible to express the func-

tional J as

J [y] =

∫ x0

0

y′3y

1 + y′2
dx . (14)

Following the same line of reasoning we have the necessary condition for the
optimum of the above functional. This results in the same Euler equation (10).
This time, however, we obtain slightly more complicated ordinary differential
equation

y′
(
y y′′

(
y′2 − 3

)
− y′2 − y′4

)
= 0 . (15)

This is an obvious consequence of a more complex form of a functional J . Solution
to this equation has to fulfil the same boundary conditions as previously y(0) = 0,
and y(x0) = y0.
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4.2 Exact pseudo solution

A solution to nonlinear Eq. (15) may not be unique. It can, however, be integrated
once setting simultaneously y′ = u(y) and y′′ = u′u. This leads to another
nonlinear equation C1y y

′3 = (1 + y′2)2 this time of the first order. This equation
can be classified as Lagrange equation and its parametric solution is

x(p) =
1

C1

(
3

4p4
+

1

p2
ln p+ C2

)

, (16a)

y(p) =

(
1 + p2

)2

C1p3
, (16b)

where p = y′ is a parameter and derivative at the same time. It can be easily
demonstrated keeping in mind that dy

dx = dy
dp/

dx
dp = p. Unknown constant in

Eq. (16) should satisfy boundary conditions. Solution (16) is of no practical value.
This is because of nonlinear and non-unique character of Eq. (15). It possible to
find the optimal solution only within the range of x+ ∈ [0.1, 1]. Consequently, it
is impossible to find the most interesting part of the solution around x+ ≈ 0.

4.3 Approximate solution due to the functional

The differential equation for the functional (15) has a complicated form. This
means that it is extremely difficult to give an explicit solution. The classic ap-
proach to this problem is to simplify the form of a functional (14). It is assumed
that y′2 ≪ 1 and hence y′2 + 1 ≈ 1. This assumption is not true when x+ ≈ 0
where one would expect y′(x) → ∞ as x → 0+. This is because of smoothness
of the axisymmetric solution. However, far from the point of stagnation the dis-
cussed simplification is justified. If so, then the form of functional (14) can be
simplified

J [y] =

∫ x0

0
y′3y dx . (17)

The necessary condition for the optimum of the above functional results in simpler
Euler equation form: y′(y′2+3y y′′) = 0. There are two solutions to this equation.
The first trivial solution y = C1 does not fulfil boundary conditions. The second
solution is y(x) = C2(4x − 3C1)

3
4 . Applying boundary conditions y(0) = 0, and

y(x0) = y0 we have

y

y0
=

(
x

x0

)3
4

. (18)

The same in dimensionless variables yields y+ = (x+)
3
4 . Solution of (18) has the

form of a parabola and it is shown in Fig. 2.
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Figure 3: J+ values as a function of the exponent n.

4.4 Approximate solution due to form of the function

It can be easily verified that following curve y+ = (x+)
1
2 gives even smaller value

of the original functional (14) in comparison with y+ = (x+)
3
4 that minimises

functional (17). This suggest that instead of simplified version of functional (14)
one can consider certain class of functions. The natural candidate is

y+ =
(
x+
)n

. (19)

The unknown exponent n should be n ∈]0,+∞[. In spite of appearances, this is
a fairly wide range of solutions, which can take the form of from a thin picket
to almost a tube. The class of functions (19) satisfies boundary conditions in
dimensionless form y+(0) = 0, and y+(1) = 1.

Known form of the function (19) allows to transform the variational problem
to the classic problem of function optimisation. One looks for the optimal value
of the exponent n. This method is somewhat similar to the Ritz method. Its
approximate nature is in the fact that the family of assumed function (19) does
not have to incorporate the exact solution of a functional (14). Functional (14)
now takes the following form:

J+ :=

∫ 1

0

n3(x+)4n−3

1 + n2(x+)2n−2
dx+ (20)

and can be integrated only numerically. Figures 3 presents values of functional
J+ as a function of exponent n according to Eq. (20). It is now apparent that
exponent 3

4 , being an optimal solution of simplified functional (17), is not the
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best solution when it comes to original functional (14). The optimal exponent
within the class of functions (19) is n ≈ 0.46. This leads to the optimal parabola
y+ = (x+)0.46 shown in Fig. 2.

4.5 Approximate solution by means of optimisation of a Bézier

curve

Another approach to minimisation of functional (14) is to discretise the variational
problem by means of Bézier curves. This means that the original problem
f : C2

[0;1] → R is now reduced to single variable optimisation f : RD → R

where
C
2
[0;1] :=

{
f | f, f ′, f ′′ : [0; 1] → R are continuous

}
. (21)

Figure 6 shows an example of Bézier curve described by means of five points.
First and last point are fixed as well as the x coordinate of the second point. The
former geometrical constrain is necessary in order to keep the surface of revolution
smooth. The assumed geometrical constrains results in five independent variables,
i.e., D = 5.

If the objective function to be minimised is f : RD → R then the constrained
optimisation problem is

min
x∈Ω

f(x) = f0 , (22)

where a D dimensional point is x = (x1, x2, . . . , xD). The objective function is
subjected to box constrains

Ω :=
{
x ∈ R

D : Li ≤ xi ≤ Ui

}
. (23)

The argument g of the global minimum value of the objective function f is defined
as

g = argmin
x∈Ω

f(x) , (24)

so that f0 = f(g). If Ω = R
D one deals with unconstrained optimisation.

4.5.1 Optimisation algorithm

Differential evolution (DE) [9] is the state of the art global optimisation algo-
rithms. It can be classified as biologically-inspired metaheuristic or multipoint,
derivative free algorithm. DE may be regarded as an extension of genetic al-
gorithms [6]. Mutation and binomial crossover are performed by means of the
following rule:

yi = K ◦ (xn
a + F (xn

b − xn
c )) + (1−K) ◦ xn

i , (25)
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Figure 4: Differential evolution pseudocode.

where the vector K is defined as

K = H(C − U(0, 1)) . (26)

In the above F is the scale factor, C stands for crossover probability. Lower and
upper domain constraints are denoted as L and U respectively. The subscripts
a, b and c refer to three different individuals or the so-called candidate solutions
among N vectors. Finally, the number of iterations is denoted as nmax. Selection
is carried out by means of

xn+1
i =

{

yi if f(yi) < f(xn
i ),

xn
i otherwise.

(27)

The two most popular variants of DE are listed below, namely

• DE/Rand/1/Bin

yi = xn
a + F (xn

b − xn
c ) , (28)

• DE/Best/1/Bin

yi = gn + F (xn
b − xn

c ) . (29)

The complete pseudocode of DE is shown in Fig. 4.
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Figure 5: Convergence

4.5.2 Results

Uniform random initialisation within the search space with random seed based
on time was considered. The algorithms stopped when the number of generations
nmax = 30 was reached. The total number of solution per generation (population
size) was N = 20. The scale parameter F of DE and the crossover probability C
are listed in Tab. 1 together with other optimisation parameters such as lower L

and upper U box constrains.

Table 1: Basic parameters of an algorithm.

Symbol Value

D 5

N 20

nmax 30

F 0.9

C 0.7

L (0, 0.01, 0, 0.5, 0)

U (1, 0.5, 1, 1, 1)

Figure 5 shows DE convergence by means of individual best per iteration (popu-
lation) as well as an arithmetical average individual per nth iteration according
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to the following equation:

x̄n =
1

N

N∑

i=1

xn
i . (30)

Quick convergence can be observed. Typically it takes five to ten iteration to reach
the global optimum. The optimal Bézier curve, resulting in the lowest value of
functional J , is shown in Fig. 6 which can be compared with other solutions in
Fig. 2.

Figure 6: Optimal Bézier curve.

5 Summary

Two new approaches and solutions to minimum drag shape body problem have
been introduced. Both transform the original variational problem to the classic
problem of function optimisation. First approach is possible due to assumption of
certain class of function, namely power law shapes. This makes it possible to find
the optimal value of the exponent n = 0.46 being better than the classic n = 3

4 .
Even better solution has been accomplished by means of a Bézier curve leading
to discretised functional optimisation.
All solutions can be compared and ordered by means of the drag coefficient

cd =
Rx

1
2ρU

2
∞A

, (31)

where A = πy20 is the reference area. Table 2 presents the drag coefficient ratios
where the reference drag, cdc, has been calculated for cone. It is clear that the clas-
sic power law shape with the exponent n = 3

4 is one of the worst. Modern global
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Table 2: Drag coefficients ratios.

Curve cd
cdc

y+ = x+ 1.000

y+ = (x+)
3

4 0.880

y+ = (x+)
1

2 0.805

y+ = (x+)0.46 0.803

Bézier 0.769

optimisation methods such as DE can produce better solutions characterised by
lower drag.

Received in March 2016
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