PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Propagation in dielectric rectangular waveguides

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present a fundamental and accurate approach to compute the attenuation of electromagnetic waves propagating in dielectric rectangular waveguides. The transverse wave numbers are first obtained as roots of a set of transcendental equations developed by matching the fields with the surface impedance of the wall. The propagation constant is found by substituting the values of transverse wave numbers into the dispersion relation. We have examined the validity of our model by comparing the computed results with those obtained from Marcatili’s equations and the finite element method. In our results, it is shown that the fundamental mode is identical with that found in a perfectly conducting waveguide. Our analysis also shows that a hollow waveguide is found to have much lower attenuation than its dielectric counterparts. Since the cutoff frequency is usually affected by the constitutive properties of the dielectric medium, for a waveguide designed for wave with the same cutoff frequency, hollow waveguides turn out to be relatively larger in size.
Czasopismo
Rocznik
Strony
317--330
Opis fizyczny
Bibliogr. 46 poz., rys.
Twórcy
autor
  • Faculty of Engineering and Green Technology, Tunku Abdul Rahman University, Kampar, Perak, Malaysia
autor
  • Faculty of Engineering and Green Technology, Tunku Abdul Rahman University, Kampar, Perak, Malaysia
autor
  • Faculty of Engineering and Green Technology, Tunku Abdul Rahman University, Kampar, Perak, Malaysia
autor
  • Faculty of Engineering and Green Technology, Tunku Abdul Rahman University, Kampar, Perak, Malaysia
autor
  • Centre of Photonics and Advanced Materials Research, Kampar, Perak, Malaysia
Bibliografia
  • [1] HAMILTON D.P., GREEN R.J., LEESON M.S., Simple estimation formulas for rectangular dielectric waveguide single-mode range and propagation constant, Microwave and Optical Technology Letters 49(3), 2007, pp. 503–505.
  • [2] WELLS C.G., Analysis of shielded rectangular dielectric rod waveguide using mode matching, PhD Thesis, University of Southern Queensland, Australia, 2005.
  • [3] DUDOROV S., Rectangular dielectric waveguide and its optimal transition to a metal waveguide, PhD Thesis, Helsinki University of Technology, Finland, 2002.
  • [4] KUZNETSOV M., Expressions for the coupling coefficient of a rectangular-waveguide directional coupler, Optics Letters 8(9), 1983, pp. 499–501.
  • [5] LEUNG K.W., SO K.K., Rectangular waveguide excitation of dielectric resonator antenna, IEEE Transactions on Antennas and Propagation 51(9), 2003, pp. 2477–2481.
  • [6] SALEHI M., BORNEMANN J., MEHRSHAHI E., Wideband substrate-integrated waveguide six-port power divider/combiner, Microwave and Optical Technology Letters 55(), 2013, pp. 2984–2986.
  • [7] LIU J., SAFAVI-NAEINI S., CHOW Y.L., ZHAO H., New method for ultra wide band and high gain rectangular dielectric rod antenna design, Progress in Electromagnetics Research C 36, 2013, pp. 131–143.
  • [8] ENG GEE LIM, ZHAO WANG, JING CHEN WANG, LEACH M., RONG ZHOU, CHI-UN LEI, KA LOK MAN, Wearable textile substrate patch antennas, Engineering Letters 22(2), 2014, pp. 94–101.
  • [9] STRATTON J.A., Electromagnetic Theory, Chapter 9, McGraw-Hill, New York, 1941.
  • [10] COLLIN R.E., Field Theory and Guided Waves, Chapter 5, IEEE Press, New York, 1991.
  • [11] BUCK J.A., Fundamentals of Optical Fibers, Wiley, New York, 2004.
  • [12] YEAP K.H., THAM C.Y., YEONG K.C., WOO H.J., Wave propagation in lossy and superconducting circular waveguides, Radioengineering 19(2), 2010, pp. 320–325.
  • [13] YASSIN G., THAM C.Y., WITHINGTON S., Propagation in lossy and superconducting cylindrical waveguides, [In] Proceedings of the 14th International Symposium on Space Terahertz Technology, Tucson, Arizona, 2003, pp. 516–519.
  • [14] KNOX R.M., TOULIOS P.P., Integrated circuit for millimeter through optical frequency range, [In] Proceedings of the MRI Symposium on Submillimeter Waves, Polytechnic Press, 1970, pp. 497–516.
  • [15] KUMAR A., THYAGARAJAN K., GHATAK A.K., Analysis of rectangular-core dielectric waveguides: an accurate perturbation approach, Optics Letters 8(1), 1983, pp. 63–65.
  • [16] CAI Y., MIZUMOTO T., NAITO Y., Improved perturbation feedback method for the analysis of rectangular dielectric waveguides, Journal of Lightwave Technology 9(10), 1991, pp. 1231–1237.
  • [17] YOUNG P.R., COLLIER J., Solution of lossy dielectric waveguide using dual effective-index method, Electronics Letters 33(21), 1997, pp. 1788–1789.
  • [18] XIA J., MCKNIGHT S.W., VITTORIA C., Propagation losses in dielectric image guides, IEEE Transactions on Microwave Theory and Techniques 36(1), 1988, pp. 155–158.
  • [19] MARCATILI E.A.J., Dielectric rectangular waveguide and directional coupler for integrated optics, The Bell System Technical Journal 48(7), 1969, pp. 2071–2102.
  • [20] CHARLES J., BAUDRAND H., BAJON D., A full-wave analysis of an arbitrarily shaped dielectric waveguide using Green’s scalar identity, IEEE Transactions on Microwave Theory and Techniques 39(6), 1991, pp. 1029–1034.
  • [21] OGUSU K., Numerical analysis of the rectangular dielectric waveguide and its modifications, IEEE Transactions on Microwave Theory and Techniques 25(11), 1977, pp. 874–885.
  • [22] HORN L., LEE C.A., Choice of boundary conditions for rectangular dielectric waveguides using approximate eigenfunctions separable in x and y, Optics Letters 15(7), 1990, pp. 349–350.
  • [23] CHENG Y.H., LIN W.G., Investigation of rectangular dielectric waveguides: an iteratively equivalent index method, IEE Proceedings J – Optoelectronics 137(5), 1990, pp. 323–329.
  • [24] KIM C.M., JUNG B.G., LEE C.W., Analysis of dielectric rectangular waveguide by modified effective-index method, Electronics Letters 22(6), 1986, pp. 296–298.
  • [25] KRAMMER H., Field configurations and propagation constants of modes in hollow rectangular dielectric waveguides, IEEE Journal of Quantum Electronics 12(8), 1976, pp. 505–507.
  • [26] GOELL J.E., A circular-harmonic computer analysis of rectangular dielectric waveguides, The Bell System Technical Journal 48(7), 1969, pp. 2133–2160.
  • [27] RAHMAN B.M.A., DAVIES J.B., Finite-element analysis of optical and microwave waveguide problems, IEEE Transactions on Microwave Theory and Techniques 32(1), 1984, pp. 20–28.
  • [28] VALOR L., ZAPATA J., Efficient finite element analysis of waveguides with lossy inhomogeneous anisotropic materials characterized by arbitrary permittivity and permeability tensors, IEEE Transactions on Microwave Theory and Techniques 43(10), 1995, pp. 2452–2459.
  • [29] SCHWEIG E., BRIDGES W.B., Computer analysis of dielectric waveguides: a finite difference method, IEEE Transactions on Microwave Theory and Techniques 32(5), 1984, pp. 531–541.
  • [30] SOLBACH K., WOLFF I., The electromagnetic fields and the phase constants of dielectric image lines, IEEE Transactions on Microwave Theory and Techniques 26(4), 1978, pp. 266–274.
  • [31] EYGES L., GIANINO P., WINTERSTEINER P., Modes of dielectric waveguides of arbitrary cross sectional shape, Journal of the Optical Society of America 69(9), 1979, pp. 1226–1235.
  • [32] MABAYA N., LAGASSE P.E., VANDENBULCKE P., Finite element analysis waveguides of optical, IEEE Transactions on Microwave Theory and Techniques 29(6), 1981, pp. 600–605.
  • [33] ATHANASOULIAS G., UZUNOGLU N.K., An accurate and efficient entire-domain basis Galerkin’s method for the integral equation analysis of integrated rectangular dielectric waveguides, IEEE Transactions on Microwave Theory and Techniques 43(12), 1995, pp. 2794–2804.
  • [34] YEAP K.H., THAM C.Y., YASSIN G., YEONG K.C., Attenuation in rectangular waveguides with finite conductivity walls, Radioengineering 20(2), 2011, pp. 472–478.
  • [35] YEAP K.H., THAM C.Y., YEONG K.C., YEAP K.H., A simple method for calculating attenuation in waveguides, Frequenz – Journal of RF-Engineering and Telecommunications 63(11–12), 2009, pp. 236–240.
  • [36] YEAP K.H., THAM C.Y., YEONG K.C., LIM E.H., Full wave analysis of normal and superconducting microstrip transmission lines, Frequenz – Journal of RF-Engineering and Telecommunications 64(3–4), 2010, pp. 59–66.
  • [37] BLACKLEDGE J., BABAJANOV B., Three-dimensional simulation of the field patterns generated by an integrated antenna, IAENG International Journal of Applied Mathematics 43(3), 2013, pp. 138–153.
  • [38] WEI B.L., XIONG C., YUE H.W., WEI X.M., XU W.L., ZHOU Q., DUAN J.H., Ultra wideband wireless propagation channel characterizations for biomedical implants, IAENG International Journal of Computer Science 42(), 2015, pp. 41–45.
  • [39] KOLUNDZIJA B.M., OGNJANOVIC J.S., Electromagnetic Modeling of Composite Metallic and Dielectric Structures, Artech House, 2002.
  • [40] BALANIS C.A., Advanced Engineering Electromagnetics, Wiley, New York, 1989.
  • [41] CHENG D.K., Field and Waves Electromagnetics, Addison Wesley, 1989.
  • [42] YEAP K.H., YEONG K.C., CHONG K.H., WOO H.J., RIZMAN Z.I., Plots of field distribution in a rectangular waveguide, International Journal of Electronics, Computer and Communications Technologies 1(2), 2011, pp. 5–13.
  • [43] YEAP K.H., THAM C.Y., NISAR H., LOH S.H., Analysis of probes in a rectangular waveguide, Frequenz – Journal of RF-Engineering and Telecommunications 67(5–6), 2013, pp. 145–154.
  • [44] YEAP K.H., LAW Y.H., RIZMAN Z.I., CHEONG Y.K., ONG C.E., CHONG K.H., Performance analysis of paraboloidal reflector antennas in radio telescopes, International Journal of Electronics, Computer and Communications Technologies 4(1), 2013, pp. 21–25.
  • [45] WITHINGTON S., Terahertz astronomical telescopes and instrumentation, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 362(1815), 2004, pp. 395–402.
  • [46] PHILLIPS T.G., KEENE J., Submillimeter astronomy, Proceedings of the IEEE 80(11), 1992, pp. 1662–1678.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-248e029c-2b7d-4e28-8dd1-a28e71daf73a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.