Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
We report the method of calculating optical dispersion of selected nematic liquid crystals using maxima positions of a transmittance filled Fabry–Pérot filter. Additionally, the profiles of a dispersive phase of reflection have been calculated. The transmittance of Fabry–Pérot filter was described as a form of a modified Airy formulae (with parameters dependence on wavelength and phase of reflection). To correctly use this function, additionally the phase of reflection is defined, taking into account the problem of a beam penetrating the mirror structure. The authors of this work assume that the point where the beam is reflected is not created strictly on the boundary of media, but it is moved into the mirror structure. The depth of the penetration changes the optical way of the wave and in consequence – the optical width of the Fabry–Pérot filter cavity. The parameter describing this phenomenon was named as a phase of reflection. This work presents how to calculate: the phase of reflection, one of refractive indices of birefringent medium inside Fabry–Pérot filter and the cavity width at the same time with the use of composed nonlinear optimization methods. The proposed method is an alternative for a reverse task solution which is hard to define properly here.
Czasopismo
Rocznik
Tom
Strony
619--628
Opis fizyczny
Bibliogr. 10 poz., rys., tab.
Twórcy
autor
- Institute of Computer Science, Military University of Technology, 2 Kaliski St., 00-908 Warsaw, Poland
autor
- Institute of Computer Science, Military University of Technology, 2 Kaliski St., 00-908 Warsaw, Poland
Bibliografia
- [1] IAM-CHOON KHOO, SHIN-TSON WU, Optics and Nonlinear Optics of Liquid Crystals, World Scientific Publishing, Singapore, New Jersey, London, Hong Kong, 1993, p. 88.
- [2] JUN LI, SHIN-TSON WU, Extended Cauchy equations for the refractive indices of liquid crystals, Journal of Applied Physics 95(3), 2004, pp. 896–901.
- [3] NOWINOWSKI-KRUSZELNICKI E., WALCZAK A., MARCINIAK P., Refractive dispersion by means of Fabry–Pérot filter, Proceedings of SPIE – The International Society for Optical Engineering 4759, 2001, pp. 496–504.
- [4] NOWINOWSKI-KRUSZELNICKI E., WALCZAK A., MARCINIAK P., Research of chromatic dispersion by means of Fabry–Pérot filter, Optica Applicata 31(4), 2001, pp. 751–760.
- [5] WALCZAK A., NOWINOWSKI-KRUSZELNICKI E., JAROSZEWICZ L.R., MARCINIAK P., Multiresolution signal processing in liquid crystals devices, Proceedings of SPIE – The International Society for Optical Engineering 4759, 2001, pp. 432–437.
- [6] WALCZAK A., NOWINOWSKI-KRUSZELNICKI E., MARCINIAK P., Influence of refractive dispersion on Fabry–Pérot filter spectrum, Biuletyn WAT 51(1), 2002, pp. 93–101.
- [7] WALCZAK A., NOWINOWSKI-KRUSZELNICKI E., JAROSZEWICZ L.R., MARCINIAK P., Tuned liquid crystalline interferometer analysis by means of generalised Berreman matrix, Opto-Electronics Review 10(1), 2002, pp. 69–73.
- [8] WALCZAK A., MARCINIAK P., Design of the liquid crystal band-pass optical filter, Proceedings of SPIE – The International Society for Optical Engineering 5947, 2005, article 59470Z.
- [9] BORN M., WOLF E., Principles of Optics, 7th Ed., Cambridge University Press, 2002, p. 360.
- [10] HAUS H.A., Waves and Fields in Optoelectronics, Prentice-Hall, 1984, p. 67.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-248cad2b-1017-4187-89d1-4c651e629e4a