Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This article proposes a method for grinding coal based on the use of the energy of a pulsed shock wave resulting from a spark electric discharge in a liquid. The main purpose of the scientific work is the development of an electric pulse device for producing coal powder, the main component of coal-water fuel. The diameter of the initial coal fraction averaged 3 mm, and the size of the resulting product was 250 μm. To achieve this goal, the dependence of the length of a metal rod electrode (positive electrode) on the length and diameter of its insulation is investigated. Various variants of the shape of the base (bottom) of the device acting as a negative electrode are considered, and an effective variant based on the results of coal grinding is proposed. An experimental electric pulse installation is described, the degree of coal grinding is determined depending on the geometric parameters. The optimal characteristics of the obtained coal powder have been established.
Wydawca
Czasopismo
Rocznik
Tom
Strony
259--268
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
- The Witold Pilecki State Higher School, Oświęcim, Poland
autor
- E.A.Buketov University of Karaganda, Kazakhstan
autor
- E.A.Buketov University of Karaganda, Kazakhsta
autor
- E.A.Buketov University of Karaganda, Kazakhstan
autor
- E.A.Buketov University of Karaganda, Kazakhstan
autor
- E.A.Buketov University of Karaganda, Kazakhstan
Bibliografia
- [1] A. Hanif, Z. Lu, and Z. Li. Utilization of fly ash cenosphere as lightweight filler in cement- based composites – A review. Construction and Building Materials, 144(30):373–384, 2017. doi: 10.1016/j.conbuildmat.2017.03.188.
- [2] A. Kijo-Kleczkowska. Research on coal-water fuel combustion in a circulating fluidized bed. Archives of Mining Sciences, 57(1):79–92, 2012. doi:10.2478/v10267-012-0006-5.
- [3] R.S. Blissett and N.A. Rowson. A review of the multi-component utilisation of coal fly ash. Fuel, 97:1–23, 2012. doi: 10.1016/j.fuel.2012.03.024.
- [4] M.A. Dmitrienko, A.G. Kosintsev, G.S. Nyashina, and S.Yu. Lyrshchikov. Anthropogenic emissions from combustion of coal-water slurries containing petrochemicals based on coal and oil processing wastes.Chemical and Petroleum Engineering, 54(8):57–62, 2018. doi: 10.1007/s10556-018-0439-6.
- [5] A. Staroń, Z. Kowalski, P. Staroń, and M. Banach. Analysis of the useable properties of coal- water fuel modified with chemical compounds. Fuel Processing Technology, 152:183–191, 2016. doi: 10.1016/j.fuproc.2016.07.007.
- [6] A. Atal and Y.A. Levendis. Observations on the combustion behavior of coal water fuels and coal water fuels impregnated with calcium magnesium acetate. Combustion and Flame, 93(1-2):61–89. 1993. doi: 10.1016/0010-2180(93)90084-G.
- [7] S. Yavuzkurt and M.Y Ha. A model of the enhancement of combustion of coal-water slurry fuels using high-intensity acoustic fields. Journal of Energy Resources Technology, 113(4):268–276, 1991. doi: 10.1115/1.2905911.
- [8] D.O. Glushkov, S.V. Syrodoy, A.V. Zhakharevich, and P.A. Strizhak. Ignition of promising coal- water slurry containing petrochemicals: Analysis of key aspects. Fuel Processing Technology, 148:224–235, 2016. doi: 10.1016/j.fuproc.2016.03.008.
- [9] D.O. Glushkov, S.Y. Lyrshchikov, S.A. Shevyrev, and P.A. Strizhak. Burning properties of slurry based on coal and oil processing waste. Energy & Fuels, 30(4):3441–3450, 2016. doi: 10.1021/acs.energyfuels.5b02881.
- [10] G.S. Khodakov. Coal-water suspensions in power engineering. Thermal Engineering, 54(1):36– 47, 2007. doi: 10.1134/S0040601507010077.
- [11] G.A. Núñez, M.I. Briceño, D.D. Joseph, and T. Asa. Colloidal coal in water suspensions. Energy & Environmental Science, 3(5):629–640. 2010. doi: 10.1039/B923601P.
- [12] F.Boylu, H. Dinçer, and G. Ateşok. Effect of coal particle size distribution, volume fraction and rank on the rheology of coal-water slurries. Fuel Processing Technology, 85(4):241–250, 2004. doi: 10.1016/S0378-3820(03)00198-X.
- [13] J. Robak, K. Ignasiak, and M. Rejdak. Coal micronization studies in vibrating mill in terms of coal water slurry (CWS) fuel preparation. Journal of Ecological Engineering, 18(2):111–118. 2017. doi: 10.12911/22998993/68214.
- [14] A.R. Rizun, T.D. Denisyuk, Y.V. Golen, V.Y. Kononov, and A.N. Rachkov. Electric discharge disintegration and coal desulphurization in the manufacture of water-coal fuel. Surface Engineering and Applied Electrochemistry, 47(1):100–102. 2011. doi: 10.3103/S1068375511010170.
- [15] I. Kuritnik, B.R. Nussupbekov A.K. Khassenov, D.Zh. Karabekova. Disintegration of copperores by electric pulses. Archives of Metallurgy and Materials, 60(4):2449–2551. 2015. doi: 10.1515/amm-2015-0412.
- [16] L.A. Yutkin. Electrohydraulic effect and its application in industry. Mechanical Engineering, 1986. (in Russian).
- [17] B.R. Nussupbekov, A.K. Khassenov, D.Zh. Karabekova, U.B. Nussupbekov, M. Stoev, and M.M. Bolatbekova. Coal pulverization by electric pulse method for water-coal fuel. Bulletin of the University of Karaganda-Physics. 4(96):80–84, 2019. doi: 10.31489/2019Ph4/80-84.
- [18] V.I. Kurets, M.A. Soloviev, A.I. Zhuchkov, and A.V. Barskaya. Electric Discharge technologies for processing and destruction of materials. Publishing house of Tomsk Polytechnic University, Tomsk, Russia 2012. (in Russian).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-248c859b-0cc7-4dac-852c-b86ba947d75b