PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fuel Cell Analytical Modeling: solving the trade-off between accuracy and complexity

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Model baterii z membraną protonową – wybór między dokładnością a złożonością
Języki publikacji
EN
Abstrakty
EN
In this paper, a 5.5 kW Proton Exchange Membrane fuel cell is modeled. The proposed analytical model is described and the parameters identification procedure is further discussed. Simulation results of all three sub-models are compared to test the accuracy of each one. A comparison between simulation and experimental results is provided as well validating the modeling approach.
PL
W pracy przedstawiono model 5.5 kW baterii pracującej na zasadzie membrany protonowej. Przedyskutowano model oraz parametry identyfikacyjne.
Rocznik
Strony
220--224
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wykr.
Twórcy
autor
  • University of Palermo
autor
  • University of Palermo
autor
  • University of Palermo
  • University of Palermo
autor
  • University of Naples
Bibliografia
  • [1] Brando G., Dannier A., Del Pizzo A., Rizzo R., Power Electronic Transformer for Advanced Grid Management in Presence of Distributed Generation. International Review of Electrical Engineering IREE, Vol. 6, n. 7, Dec.2011, ISSN 1827- 6660, pp. 3009-3015.
  • [2] Rizzo R., Tricoli P., Spina I., An innovative reconfigurable integrated converter topology suitable for distributed generation, Energies, Vol. 5, Issue 9, Sept. 2012, ISSN 1996-1073, p. 3640-3654.
  • [3] Andreotti A., Del Pizzo A., Rizzo R., Tricoli P., An efficient architecture of a PV plant for ancillary service supplying, International Symposium on Power Electronics Electrical Drives Automation and Motion SPEEDAM, Pisa, June 2010, pp. 678 – 682.
  • [4] Miceli R., Energy management and smart grids, Energies, 2013, 6 (4), 2262-2290.
  • [5] Boscaino V., Messina A., Miceli R., Capponi G., Fuel Cells for Household Appliances: experimental test of power management algorithms, Proc. of the International Conference on Clean Electrical Power ICCEP 2013, June 2013, 1-6.
  • [6] Piegari L., Rizzo R., Tricoli P., A Comparison between Line-Start Synchronous Machines and Induction Machines in Distributed Generation, Prezglad Elektrotechniczny (Electrical Review), ISSN 0033-2097, R. 88 n. 5b/2012, pp. 187-193.
  • [7] Boscaino V., Pellitteri F., La Rosa R., Capponi G., Wireless battery chargers for portable applications: design and test of a highefficiency power receiver, Power Electronics IET, Jan.2013, vol.6, no.1, 20-29.
  • [8] Boscaino V., Livreri P., Marino F., Minieri M., Current-Sensing Technique for Current-Mode Controlled Voltage Regulator Modules, Micro-electronics Journal, Elsevier, 2008, 39, 12, 1852-1859. DOI: 10.1016/j.mejo.2008.05.015.
  • [9] Liu S., Dougal R.A., Design and Analysis of a Current-Mode Controlled Battery/Ultracapacitor Hybrid, Proc. IEEE International Conference on Industry Applications, 3-7 Oct. 2004, 1140-1145.
  • [10 ]Gao L., Dougal R.A., Active Power Sharing in Hybrid Battery/Capacitor Power Sources. Proc. IEEE International Applied Power Electronics Conference, 9-13 Feb. 2003, 497-503.
  • [11] Leedy A.W., Nelms R.M, Analysis of a capacitor-based hybrid source used for pulsed load applications, Proc. IEEE International Energy Conversion Engineering Conf., 29-31 July 2002.
  • [12] Liu S., Dougal R.A., Power Enhancement of an Actively Controlled Battery/Ultracapacitor Hybrid. IEEE Trans.Power Electronics, 2005, 20, 236-243
  • [13] Jiang Z., Dougal R.A., Leonard R.A, Novel Digital Power Controller for Fuel Cell/Battery Hybrid Power Sources. Proc. IEEE APEC 2005, 2005, 467-473.
  • [14] Boscaino V., Collura R., Capponi G., Marino F., A fuel cell–battery hybrid power supply for portable applications. Proc. 20th International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa 14-16 June 2010, 580-585.
  • [15] Jiang Z., Dougal R.A., Synergetic Control of Power Converters for Pulse Current Charging of Advanced Batteries From a Fuel Cell Power Source. IEEE Trans. on Power Electronics, 2004, 19, 1140-1150.
  • [16J iang Z., Gao L., Dougal R.A., Flexible Multi-objective Control of Power Converter in Active Hybrid Fuel Cell/Battery Power Sources. IEEE Trans. on Power Electronics, 2005, 20, 244-253.
  • [17] Appleby A.J., Foulkes F.R., Fuel Cell Handbook, 6th ed.; EG&G Technical Services Inc., Science Applications International Corporation, U.S. Department of Energy, November 2002
  • [18] Askarzadeh A., Rezazadeh A., An Innovative Global Harmony Search Algorithm for Parameter Identi-fication of a PEM Fuel Cell Model, IEEE Trans. on Industrial Electronics, 2010, 59, 3473–3480.
  • [19] Boscaino V., Miceli R., Capponi G., A semi-empirical multipurpose steady-state model of a fuel cell for household appliances, Proc. of the International Conference on Clean Electrical Power ICCEP 2013, June 2013, 1-6.
  • [20] Chibante R., Campos D., An experimentally optimized PEM fuel cell model using PSO algorithm, Proc. IEEE International Symposium on Industrial Electronics, 2010, 2281–2285.
  • [21] Bonanno D., Genduso F., Miceli R., Main Fuel Cells Mathematical Models: Comparison and Analysis in Terms of Free Parameters, Proc. of the International Conference on Electrical Machines ICEM 2010, Rome, 6-8 Sept. 2010, 1-6.
  • [22] Di Dio V., La Cascia D., Miceli R., Liga R., Integrated mathematical model of proton exchange membrane fuel cell stack (PEMFC) with automotive synchronous electrical power drive, Proceedings of the IEEE International Conference on Electrical Machines ICEM 2008, pp.1-6.
  • [23] Jia J., Li Q., Wang Y., Cham Y.T., Han M., Modeling and Dynamic Characteristic Simulation of a Proton Exchange Membrane Fuel Cell. IEEE Trans. on Energy Conversion, 2009, 24, 283-291.
  • [24] Moreira M.V., Da Silva G.E., A pratical model for evaluting the performance of proton exchange membrane fuel cells, Journal of Renewable Energy, 2009, 34, 1734–1741.
  • [25] Al-Baghdadi, Maher AR. Modelling of proton exchange membrane fuel cell performance based on semi-empirical equations,Renewable Energy, 2005, 1587-1599.
  • [26] Pathapati P.R., Xue X., Tang. J., A new dynamic model for predicting transient phenomena in a PEM fuel cell system,Renewable energy,2005, 1-22.
  • [27] Ramos-Paja C.A, Giral R., Martinez-Salamero L., Romano J., Romero A., Spagnuolo G., A PEM Fuel-Cell Model Featuring Oxygen-Excess-Ratio Estima-tion and Power-Electronics Interaction, IEEE Trans. on Industrial Electronics, 2010, 57, 1914-1924.
  • [28] Chun-Hua, Min, A novel three-dimensional, two-phase and nonisothermal numerical model for proton exchange membrane fuel cell, Journal of Power Sources, 2010, 195, 1880–1887.
  • [29] Boscaino V., Miceli R., Capponi G., Casadei D., Fuel cell modelling and test: experimental validation of model accuracy, Proc. International Conference on Power Engineering, Energy and Electrical Drives,POWERENG 2013, 2013, 1–6.
  • [30] Boscaino V., Miceli R., Capponi G., MATLAB-based simulator of a 5 kW fuel cell for power electronics design, International Journal of Hydrogen Energy, Vol. 38, Issue 19, 27 June 2013, 7924-7934.
  • [31] Boscaino V., Miceli R., Capponi G., A circuit model of a 5kW Fuel Cell, Proc. International Conference on Clean Electrical Power ICCEP 2013, June 2013.
  • [32] Boscaino V., Capponi G., Marino F., FPGA implementation of a fuel cell emulator, Proc.20th IEEE International Symposium on Power Electronics, Electrical Drives, Automation and Motion, Pisa, Italy, June 14-16, 2010, 1297-1301.
  • [33] Bauer P., Korondi P., van Duijsen P.J., Integrated control– Simulation design approach. Europe 2003, Official proceedings international conferences ZM Communications GmbH, 227-233.
  • [34] Boscaino V., Capponi G., Di Blasi G.M., Livreri P., Marino F., Modeling and simulation of a digital design approach for power supply systems. Proc. IEEE Workshops on Computers in Power Electronics COMPEL 2006, Troy USA,16-19 July 2006, 246-249.
  • [35] Di Tommaso A.O., Genduso F., Miceli R., Galluzzo G.R., Computer aided optimization via simulation tools of energy generation systems with universal small wind turbines, Proc.3rd IEEE International Symposium on Power Electronics for Distributed Generation Systems PEDG 2012, 570-577.
  • [36] Ahmed O.A., Bleijs J.A.M., Pspice and Simulink co-simulation for high efficiency DC-DC converter using SLPS interface software, Proc. IET Intern. Conf. on Power Electronics, Machines and Drives PEMD 2010, Brighton, 19-21 Apr. 2010, 1-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-248b6048-cc5c-4b25-85c5-4e79822f89e3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.