PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the canonical connection for smooth envelopes

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A notion known as smooth envelope, or superposition closure, appears naturally in several approaches to generalized smooth manifolds, which were proposed in the last decades. Such an operation is indispensable in order to perform differential calculus. A derivation of the enveloping algebra can be restricted to the original one, but it is a delicate question if the the vice–versa can be done as well. In a physical language, this would correspond to the existence of a canonical connection. In this paper, we show an example of an algebra which always possesses such a connection.
Wydawca
Rocznik
Strony
459--464
Opis fizyczny
Bibliogr. 14 poz.
Twórcy
autor
  • Mathematical Institute in Opava Silesian University in Opava Na Rybnicku 626/1, 746 01 Opava, Czech Republic
Bibliografia
  • [1] A. De Paris, A. Vinogradov, Fat Manifolds and Linear Connections, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2009.
  • [2] L. Gillman, M. Jerison, Rings of Continuous Functions, Reprint of the 1960 edition; Graduate Texts in Mathematics, No. 43, Springer-Verlag, New York, 1976.
  • [3] A. Grothendieck, Éléments de géométrie algébrique. IV. Étude locale des schémas et des morphismes de schémas., Inst. Hautes Études Sci. Publ. Math., 20 (1964).
  • [4] M. Heller, Algebraic foundations of the theory of differential spaces, Differential spaces and their applications (Pasierbiec, 1990), Demonstratio Math. 24 (1991), 349–364.
  • [5] T. Jagodzinski, W. Sasin, Weil homomorphism in non-commutative differential spaces, Demonstratio Math. 38 (2005), 507–516.
  • [6] J. Johnson, Kähler differentials and differential algebra, Ann. of Math. (2) 89 (1969), 92–98.
  • [7] J. Krasil’shchik, A. Verbovetsky, Homological methods in equations of mathematical physics, Open Education & Sciences, Opava, 1998. http://arxiv.org/abs/math/9808130v2
  • [8] P. W. Michor, Manifolds of Differentiable Mappings, Shiva Mathematics Series, 3, Shiva Publishing Ltd., Nantwich, 1980.
  • [9] J. W. Milnor, J. D. Stasheff, Characteristic Classes, Annals of Mathematics Studies, No. 76, Princeton University Press, Princeton, N. J., 1974.
  • [10] J. Nestruev, Smooth Manifolds and Observables, Graduate Texts in Mathematics, 220, Joint work of A. M. Astashov, A. B. Bocharov, S. V. Duzhin, A. B. Sossinsky, A. M. Vinogradov and M. M. Vinogradov; Translated from the 2000 Russian edition by Sossinsky, I. S. Krasil’ schik and Duzhin, Springer-Verlag, New York, 2003.
  • [11] G. Sardanashvily, Lectures on Differential Geometry of Modules and Rings, 2009, arXiv:0910.1515
  • [12] R. Sikorski, Differential modules, Colloq. Math. 24 (1971/72), 45–79.
  • [13] R. G. Swan, Vector bundles and projective modules, Trans. Amer. Math. Soc. 105 (1962), 264–277.
  • [14] E. M. Vechtomov, On the general theory of rings of continuous functions, Uspekhi Mat. Nauk 49 (1994), 177–178.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2486abf1-ca25-494f-aa35-04a3e53a9bbf
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.