PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

UPLC–MS method for determination of phenolic compounds in chili as a coffee supplement and their impact of phytochemicals interactions on antioxidant activity in vitro

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The use of polyphenols in food fortification is a common custom generally carried out to increase its nutritional value. In this paper, ground chili pepper was proposed as a potential functional coffee additive. Various phenolic compounds present in this spice were analyzed by a new, sensitive, and selective ultrahigh-performance liquid chromatography combined with mass spectrometry (UPLC–MS). Separation was done on a column filled with a modified silica gel RP-18, in gradient solvent systems A (1% H3PO4 in water) and B (40% CH3CN in solution A). The capsaicin was found as the main phenolic compound of ground chilli pepper, which concentration was 295.95 mg g−1. It was demonstrated that quercetin is present in this spice also in different forms: not only as dihydrocapsaicin but also as quercetin-3-O-deoxyhexoside-glucuronide and quercetin-3-O-deoxyhexoside, whereas luteolin in the form of three compounds: luteolin-7-O-dihexoside, luteolin-6-C-hexoside-8-C-pentoside, and luteolin-7-O-malonyl-dihexosyl-pentoside. We have also identified apigenin-6-C-hexoside-8-C-pentoside. Furthermore, this paper, for the first time, evaluates the potential bioaccessibility of and interactions between compounds with multidirectional antioxidant properties from coffee and ground chili pepper. All samples, coffee, chili, and a mixture of the two showed ability to scavenge free radicals and chelate iron ions and were characterized by reducing power. The level of these activities changed after simulated gastrointestinal digestion. In the mixtures of water extracts, phytochemicals acted synergistically in the case of five from six tested methods. Interestingly, after digestion, in vitro chili extract lost ability to scavenge O2− radicals; that is why it was impossible to determine the interactions between coffee and chili in this case. Moreover, an antagonism in the action was observed for those cases, where, in water extracts, we have identified synergistic interaction.
Słowa kluczowe
Rocznik
Strony
66--71
Opis fizyczny
Bibliogr. 24 poz., rys.
Twórcy
autor
  • Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
autor
  • Department of Biochemistry and Crop Quality, Institute of Soil Science and Plant Cultivation, State Research Institute, Krancowa 8, 24-100 Pulawy, Poland
  • Department of Biochemistry and Food Chemistry, University of Life Sciences, Skromna 8, 20-704 Lublin, Poland
Bibliografia
  • [1] Bors W. ; Heller W. ; Michel C. ; Stettmaier K. Handbook of Antioxidants (E. Cadenas and L. Packer, eds.) Marcel Dekker Inc., New York, 1996 , pp. 409 – 466.
  • [2] Nawrot P. ; Jordan S. ; Eastwood J. ; Rotstein J. ; Hugenholtz A. ; Feeley M. Food Addit. Cont. 2003 , 20 , 1 – 30.
  • [3] Dorea J. G. ; daCosta T. H. Br. J. Nutr. 2005 , 93 , 773 – 782.
  • [4] Cämmerer B. ; Kroh L. W. Eur. Food Res. Technol. 2006 , 223 , 469 – 474.
  • [5] Deepa G. ; Ayesha S. ; Nishtha K. ; Thankamani M. Int. Food Res. J. 2013 , 20 , 1711 – 1716.
  • [6] Zheng W. ; Wang S. J. Agric. Food Chem. 2001 , 49 , 5165 – 5170.
  • [7] Korel F. ; Bagdatlioglu N. ; Balaban M. O. ; Hisil Y. J. Agric. Food Chem. 2002 , 50 , 3257 – 3261.
  • [8] Howard L. R. ; Talcott S. T. ; Brenes C. H. ; Villalon B. J. Agric. Food Chem. 2000 , 48 , 1713 – 1720.
  • [9] Materska M. ; Perucka I. J. Agric. Food Chem. 2005 , 3 , 1750 – 1756.
  • [10] Materska M. ; Perucka I. ; Stochmal A. ; Piacente S. ; Oleszek W. Pol. J. Food Nutr. Sci. 2003 , 12 , 893 – 898.
  • [11] Pane C. ; Fratianni F. ; Parisi M. ; Nazzaro F. ; Zaccardelli M. Crop Protect. 2016 , 84 , 81 – 87.
  • [12] Gawlik-Dziki U. J. Funct. Foods 2012 , 4 , 872 – 882.
  • [13] Re R. ; Pellegrini A. ; Proteggente A. ; Pannala M. ; Yang M. ; Rice-Evans C. Free Radic. Biol. Med. 1999 , 26 , 1231 – 1237.
  • [14] Guo J. T. ; Lee H. L. ; Chiang S. H. ; Lin H. I. ; and C. Y. J. Food Drug Anal. 2001 , 9 , 96 – 101.
  • [15] Oyaizu M. Jpn. J. Nutr. 1986 , 4 , 307 – 315.
  • [16] Marklund S. ; Marklund G. Eur. J. Biochem. 1974 , 47 , 469 – 474.
  • [17] Durak A. ; Gawlik-Dziki U. ; Pecio L. Food Chem. 2014 , 162 , 81 – 88.
  • [18] Durak A. ; Gawlik-Dziki U. ; Kowalska I. Food Chem. 2015 , 166 , 261 – 269.
  • [19] Minamisawa M. ; Yoshida S. ; Takai N. Anal. Sci. 2004 , 20 , 325 – 328.
  • [20] Vignoli J. A. ; Bassoli D. G. ; Benassi M. T. Food Chem. 2011 , 124 , 863 – 868.
  • [21] Shan B. ; Cai Y. Z. ; Sun M. ; Corke H. J. Agric. Food Chem. 2005 , 53 , 7749 – 7759.
  • [22] Ozgur M. ; Ozcan T. ; Akpinar-Bayizit A. ; Afr L. J. Agric. Res. 2011 , 6 , 5638 – 5644.
  • [23] Pekkarinen S. S. ; Stockmann H. ; Schwarz K. ; Heinonen M. ; Hopia A. I. J. Agric. Food Chem. 1999 , 47 , 3036 – 3043.
  • [24] Saura-Calixto F. ; Serrano J. ; Goñi I. Food Chem. 2007 , 101 , 492 – 501.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2486695c-69b2-44f1-a8ef-5db2d89a72d1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.