PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Exploring the generic fallacy — meta path-dependencies in innovation- -practices of ‘drone-making’ (eVTOLs)

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Generic technologies are oftentimes heralded as overall beneficial drivers of innovation, especially regarding their flexibility, low cost of adaption (once established) and their inclusiveness toward a variety of actors. This paper adds to literature on innovation- studies by questioning these promises through the lenses of ‘lock in’ and ‘path dependencies’ and asks how generic approaches to innovation may contribute to a fallacy where increased flexibility is assumed yet implicitly, a sort of ‘lock in genericism’ may occur. The paper argues that, for all the advantages that come with the research and adaption of generic technologies, they also bring with them an increased risk of enamourment with innovations that are applicable to a range of potential applications that, in turn, may lead to more specific technological innovations being at the danger of becoming invisible / unwanted altogether. To investigate this phenomenon further, the paper applies the concept of ‘lock in genericism’ to the field of eVTOL-multicopter- / drone-innovation. In this context, the paper analyzes a series of three case-studies to investigate how this ‘lock-in genericism’ emerges from material, temporal and spatial components of drone-making and subsequently seeks to outline a framework for ‘integrating generic technologies’ in this particular field of application (of drones) to overcome the described lock-in in this field while maintaining their advantages. The paper concludes by discussing the relevance of the concept of ‘lock-in genericism’ on a broader level, highlighting the risk of a ‘generic turn’ in contemporary innovation practices that, in turn, requires critical reflection.
Rocznik
Strony
15--29
Opis fizyczny
Bibliogr. 38 poz., for., rys.
Twórcy
autor
  • Technical University of Munich, Arcisstraße 21, 80333 München, Germany
Bibliografia
  • [1] Maine E, Garnsey E. Commercializing generic technology: The case of advanced materials ventures. Research Policy. 2006;35(3):375–393. https://doi.org/10.1016/j.respol.2005.12.006.
  • [2] Keenan M. Identifying emerging generic technologies at the national level: The UK experience. Journal of Forecasting. 2003;22(2–3):129–160. https://doi.org/10.1002/for.849.
  • [3] Shinn T. New sources of radical innovation: Research- technologies, transversality and distributed learning in a post-industrial order. Social Science Information. 2005;44(4):731–764. https://doi.org/10.1177/0539018405058218.
  • [4] Vinogradov E, Pollin S. Drone technology: interdisciplinary systematic assessment of knowledge gaps and potential solutions. 2021. https://doi.org/10.48550/arXiv.2110.07532.
  • [5] Ruttan VW. General purpose technology, revolutionary technology, and technological maturity. Staff Paper P08- 3. Minnesota: University of Minnesota; 2008. Available from: https://ageconsearch.umn.edu/record/6206/.
  • [6] Mace R, Hardie G, Place J. Accessible Environments: Toward Universal Design. Raleigh, NC: North Carolina State University: 1991.
  • [7] Mace RL. Universal design in housing. Assistive Technology. 1998;10(1):21–28, https://doi.org/10.1080/10400435.1998.10131957.
  • [8] Burgstahler S. Universal design of distance learning. Information Technology and Disability Journal. 2002;8(1). Available from: http://itd.athenpro.org/volume8/number1/burgstah.html.
  • [9] Cowan R, Hultén S. Escaping lock-in: The case of the electric vehicle. Technological Forecasting and Social Change. 1996;53(1):61–79. https://doi.org/10.1016/0040-1625(96)00059-5.
  • [10] Ferro CG, Brischetto S, Torre R, Maggiore P. Characterization of ABS specimens produced via the 3D printing technology for drone structural components. Curved and Layered Structures. 2016;3(1):172–188. https://doi.org/10.1515/cls-2016-0014.
  • [11] Goh GL, Dikshit V, Koneru R, Peh ZK, Lu W, Guo DG, Yeong WY. Fabrication of design-optimized multifunctional safety cage with conformal circuits for drone using hybrid 3D printing technology. The International Journal of Advanced Manufacturing Technology. 2022;120:2573– 2586. https://doi.org/10.1007/s00170-022-08831-y.
  • [12] Brischetto S, Ciano A, Ferro CG. (2016): A multipurpose modular drone with adjustable arms produced via the FDM additive manufacturing process. Curved and Layered Structures. 2016;3(1):202–213. https://doi.org/10.1515/cls-2016-0016.
  • [13] Muralidharan N, Pratheep VG, Shanmugam A, Hariram A, Dinesh P, Visnu B. Structural analysis of mini drone developed using 3D printing technique. Materials Today: Proceedings. 2021;46(Part 17):8748–8752. https://doi.org/10.1016/j.matpr.2021.04.053.
  • [14] Cantner U, Vannuccini S. Innovation and lock-in. Jena Economic Research Papers. 2016-018.
  • [15] Page SE. Path dependence. Quarterly Journal of Political Science. 2006;1(1):87–115. http://dx.doi.org/10.1561/100.00000006.
  • [16] Cowan R. (1990): Nuclear power reactors: A study in technological lock-in. The Journal of Economic History. 1990;50(3):541–567. Available from: https://www.jstor.org/stable/2122817.
  • [17] Gallagher S. The complementary role of dominant designs and industry standards. IEEE Transactions on Engineering Management. 2007;54(2):371–379. https://doi.org/10.1109/TEM.2007.893991.
  • [18] Charmaz K. Constructing Grounded Theory: A Practical Guide Through Qualitative Analysis. Repr. Los Angeles: Sage; 2012.
  • [19] Bryant A. Re-grounding grounded theory. The Journal of Information Technology Theory and Application. 2002;4(1):25–42. Available from: https://aisel.aisnet.org/jitta/vol4/iss1/7.
  • [20] Schot J, Rip A. The past and future of constructive technology assessment. Technological Forecasting and Social Change. 1997;54(2–3):251–268. https://doi.org/10.1016/S0040-1625(96)00180-1.
  • [21] Guston DH, Sarewitz D. Real-time technology assessment. Technology in Society. 2002;24(1–2):93–109. https://doi. org/10.1016/S0160-791X(01)00047-1.
  • [22] Schmidt R, Wiesse B. Online participant videos: A new type of data for interpretative social research? Forum: Qualitative Social Research. 2019;20(2). https://doi.org/10.17169/fqs-20.2.3187.
  • [23] Tuma R. Videoprofis im Alltag. Wiesbaden: Springer Fachmedien Wiesbaden; 2017.
  • [24] Tuma R, Schnettler B. Videographie. In: Baur N, Blasius J, editors. Handbuch der empirischen Sozialforschung. Wiesbaden: Springer; 2019.
  • [25] Redmon D. Video Ethnography: Theory, methods, and ethics. London: Routledge; 2019.
  • [26] Weller K, Holaschke M. Whose stream is this anyway? Exploring layers of viewer-integration in online participatory videos. Journal of Media and Communication Studies. 2022;14(1):17–32. https://doi.org/10.5897/JMCS2021.0760.
  • [27] Lee J. Optimization of a modular drone delivery system. In: 2017 Annual IEEE International Systems Conference (SysCon). Piscataway: IEEE; 2017:1–8. https://doi.org/10.1109/SYSCON.2017.7934790.
  • [28] da Silva Ferreira MA, Tejada Begazo MF, Cano Lopes G, de Oliveira AF, Colombini EL, da Silva Simões A. Drone Reconfigurable Architecture (DRA): A multipurpose modular architecture for Unmanned Aerial Vehicles (UAVs). Journal of Intelligent and Robotic Systems. 2020;99(3–4):517–534. https://doi.org/10.1007/s10846-019-01129-4.
  • [29] Kaufmann E, Loquercio A, Ranftl R, Müller M, Koltun V, Scaramuzza D. Deep drone acrobatics. Robotics: Science and Systems. 2020. Available from: https://www.roboticsproceedings.org/rss16/p040.pdf.
  • [30] Foehn P, Brescianini D, Kaufmann E, Cieslewski T, Gehrig M, Muglikar M, Scaramuzza D. AlphaPilot: Autonomous drone racing. Autonomous Robots; 2022;46(1):307–320. https://doi.org/10.1007/s10514-021-10011-y.
  • [31] Wajcman J. Life in the fast lane? Towards a sociology of technology and time. The British Journal of Sociology. 2008;59(1):59–77. https://doi.org/10.1111/j.1468-4446.2007.00182.x.
  • [32] Briscoe G, Mulligan C. Digital Innovation: The Hackathon Phenomenon. CreativeWorks London. Working Paper No. 6. London; 2014.
  • [33] Guttenberger M, Vatter P. Innovate like Start-ups – Das Innovationsformat Makeathon als Basis für die Entwicklung disruptiver Innovationen. In: Dahm M, Thode S, editors. Digitale Transformation in der Unternehmenspraxis. Wiesbaden: Springer Gabler; 2020.
  • [34] Maskell B. The age of agile manufacturing. Supply Chain Management. 2001;6(1):5–11. https://doi.org/10.1108/13598540110380868.
  • [35] Böhmer A, Beckmann A, Lindemann U. Open innovation ecosystem – makerspaces within an agile innovation process. In: ISPIM Innovation Symposium. Manchester: The International Society for Professional Innovation Management (ISPIM); 2015.
  • [36] Benarbia T, Kyandoghere K. A literature review of dronebased package delivery logistics systems and their implementation feasibility. Sustainability. 2022;14(1):360. https://doi.org/10.3390/su14010360.
  • [37] Woodward MA, Sitti M. MultiMo-Bat: A biologically inspired integrated jumping-gliding robot. The International Journal of Robotics Research. 2014;33(12):1511–1529. https://doi.org/10.1177/027836491454130.
  • [38] Zufferey R, Ortega Ancel A, Farinha A, Siddall R, Armanini SF, Nasr M, Brahmal RV, Kennedy G, Kovac M. Consecutive aquatic jump-gliding with water-reactive fuel. Science Robotics. 2019;4(34). https://doi.org/10.1126/scirobotics.aax7330.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2484e8ef-fa8c-4946-9b1e-92273af5c6b0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.