PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The impact of nozzle configuration on the heat transfer coefficient

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The purpose of this paper is to elaborate guidelines regarding geometric configurations of a nozzle manifold that have an impact on the effectiveness of the quenching process and occurrence of quenching distortions. Design/methodology/approach: Within the framework of this study there an optimisation of nozzle manifold geometry was carried out with the help of numerical simulations created using Ansys CFX software. In the first stage, a simplification of the nozzle-sample system reduced to a two-dimensional simulation was employed to determine the most optimal location of the coolant stream. In the second stage, several arrangements of nozzle manifolds were tested in a three-dimensional simulation. The parameters that were taken into account included the rate of sample cooling, the uniformity of cooling with a sample volume and heat coefficient takeover read from its surface. Findings: The different active/inactive nozzle arrangements within the manifold and the impact of the specific arrangements on the uniformity of heat transfer from the sample surface were compared. Research limitations/implications: The simulations carried out within the framework of this study are one of the elaboration stages of a new flow heat treatment technology. Practical implications: The application of an efficient cooling chamber in flow treatment makes it possible to limit quenching distortions to a minimum. An optimal adjustment of cooling parameters and cooling nozzle configuration to the shape of the element in order to make the cooling uniform translate directly into a reduction in distortions. Avoiding the necessity to reduce distortions after quenching means there is a significant reduction in detail production costs (grinding). Originality/value: The concept of single-piece flow in the heat treatment for the mass industry is developing rapidly and constitutes a fully automated element of a manufacturing line, adjusted for the purposes of being included in the production process automatic control system. It also makes it possible to conduct comprehensive and integration quality supervision and management at the level of an individual element, which is not possible in the case of batch heat treatment, which is a gap in the production process.
Rocznik
Strony
16--24
Opis fizyczny
Bibliogr. 25 poz.
Twórcy
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1,15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1,15, 90-924 Łódź, Poland
autor
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1,15, 90-924 Łódź, Poland
  • Institute of Materials Science and Engineering, Lodz University of Technology, ul. Stefanowskiego 1,15, 90-924 Łódź, Poland
Bibliografia
  • [1] D. Herring, Understanding Component Failures. Part 1: Mechanisms. Analysis Methods, Industrial Heating 7-8 (2013) 16-18.
  • [2] D. Wulpi, Understanding How Components Fail, ASM International, Materials Park, 2013.
  • [3] K. Dybowski, J. Sawicki, P. Kula, B. Januszewicz, R. Atraszkiewicz, S. Lipa, The effect of the quenching method on the deformations size of gear wheels after vacuum carburizing, Archives of Metallurgy and Materials 61/2B (2016) 1057-1062, doi: https://doi.org/10.1515/amm-2016-0178.
  • [4] B.W. Kruszyński, Z. Gawroński, J. Sawicki, P. Zgómiak, Enhancement of gears fatigue properties by modem termo-chemical treatment and griding processes, Mechanics and Mechanical Engineering 12/4 (2008) 387-395.
  • [5] Z. Gawroński, J. Sawicki, Technological surface layer selection for small module pitches of gear wheels working under cyclic contact loads, Materials Science Forum 513 (2006) 69-74, doi: https://doi.org/10.4028/ www.scientific.net/MSF.513.69.
  • [6] M. Korecki, E. Wolowiec-Korecka, M. Sut, A. Brewka, W. Stachurski, P. Zgómiak, Precision case hardening by low pressure carburizing (LPC) for high volume production, HTM - Journal of Heat Treatment and Materials 72/3 (2017) 175-183, doi: https://doi.org/10.3139/105.110325.
  • [7] Z. Gawroński, A. Malasiński, J. Sawicki, A selection of the protective atmosphere eliminating the inter¬operational copper plating step in the processing of gear wheels, Archives of Materials Science and Engineering 44/1 (2010) 51-57.
  • [8] M. Korecki, E. Wolowiec-Korecka, D. Glenn, Single¬piece, high-volume, low-distortion case hardening of gears, Proceeding of the AGMA Fall Technical Meeting, Detroit, USA, 2015.
  • [9] M. Korecki, E. Wolowiec-Korecka, In-line, high¬volume, low-distortion, precision case hardening for automotive, transmission and bearing industry, Proceedings of the 23rd International Congress of Advanced Thermal Processing, Savanah, USA, 2016, 71-77.
  • [10] M. Korecki, E. Wolowiec-Korecka, A. Brewka, Unicase Master - In-line, high-volume, low-distortion, precision case hardening for automotive, transmission and bearing industry, Proceedings of the 3rd International Conference on Heat Treatment and Surface Engineering in Automotive Applications, Prague, Czech Republic, 2016.
  • [11] M. Korecki, E. Wolowiec-Korecka, D. Glenn, Single¬piece, high-volume, low-distortion case hardening of gears, Thermal Processing 9/10 (2016) 32-39.
  • [12] E. Wolowiec-Korecka, M. Korecki, W. Stachurski, P. Zgómiak, J. Sawicki, A. Brewka, M. Sut, M. Bazel, System of single-piece flow case hardening for high volume production, Archives of Materials Science and Engineering 79/1 (2016) 37-44, doi: 10.5604/18972764.1227661.
  • [13] N. Zuckerman, N. Lior, Jet impingement heat transfer: Physics, correlations, and numerical modeling, Advances in Heat Transfer 39 (2006) 565-631, doi: https://doi.org/10.1016/S0065-2717(06)39006-5.
  • [14] R.J. Goldstein, K.A. Sobolik, W.S. Seol, Effect of Entrainment on the Heat Transfer to a Heated Circular Air Jet Impinging on a Flat Surface, Journal of Heat Transfer 112/3 (1990) 608-611, doi: 10.1115/1.2910430.
  • [15] L. Huang, M.S. El-Genkt, Heat transfer of an impinging jet on a flat surface, International Journal of Heat and Mass Transfer 37/13 (1994) 1915-1923, doi: https://doi.org/10.1016/0017-9310(94)90331 -X.
  • [16] M. Behnia, S. Pameix, Y. Shabany, P.A. Durbin, Numerical study of turbulent heat transfer in confined and unconfined impinging jets, International Journal of Heat and Fluid Flow 20/1 (1999) 1-9, doi: https://doi.org/10.1016/S0142-727X(98) 10040-1.
  • [17] K. Jambunathan, E. Lai, M.A. Moss, B.L. Button, A review of heat transfer data for single circular jet impingement, International Journal of Heat and Fluid Flow 13/2 (1992) 106-115, doi: https://doi.org/10.1016/0142-727X(92)90017-4.
  • [18] M.V. Jensen, J.H. Walther, Numerical Analysis of Jet Impingement Heat Transfer at High Jet Reynolds Number and Large Temperature Difference, Heat Transfer Engineering 34/10 (2013) 801-809, doi: https://doi.org/10.1080/01457632.2012.746153.
  • [19] Y. Shi, A.S. Mujumdar, M.B. Ray, Effect of large temperature difference on inpingement heat transfer under a round turbulent jet, International Communications in Heat and Mass Transfer 31/2 (2004) 251-260, doi: 10.1016/S0735-1933(03)00230- 6.
  • [20] Y. Shi, M.B. Ray, A.S. Mujumdar, Effect of Large Temperature Differences on Local Nusselt Number Under Turbulent Slot Impingement Jet, Drying Technology 20/9 (2002) 1803-1825, doi: https://doi.org/10.1081/DRT-120015415.
  • [21] Y. Shi, M.B. Ray, A.S. Mujumdar, Computational Study of Impingement Heat Transfer under a Turbulent Slot Jet, Industrial and Engineering Chemistry Research 41/18 (2002) 4643-4651, doi: 10.1021/ie020120a.
  • [22] P. Heikkila, N. Milosavljevic, Investigation of Impingement Heat Transfer Coefficient At High Temperatures, Drying Technology 20/1 (2002) 211¬222, doi: https://doi.org/10.1081/DRT-120001375.
  • [23] H. Martin, Heat and Mass Transfer between Impinging Gas Jets and Solid Surfaces, Advances in Heat Transfer 13 (1977) 1-60, doi: https://doi.org/ 10.1016/S0065-2717(08)70221-1.
  • [24] R. Viskanta, Heat Transfer to Impinging Isothermal Gas and Flame Jets, Experimental Thermal and Fluid Science 6/2 (1993) 111-134, doi: https://doi.org/ 10.1016/0894-1777(93)90022-B.
  • [25] C. Wan, Y. Rao, P. Chen, Numerical predictions of jet impingement heat transfer on square pin-fin roughened plates, Applied Thermal Engineering 80 (2015) 301-309, doi: https://doi.org/10.1016/ j.applthermaleng.2015.01.053.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24831853-9330-4d89-9072-cfcfde369029
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.