PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Crystal Lattice Rotations Induced by Shear Banding in fcc Metals Deformed at High Strain Rates

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the microstructural and texture changes in polycrystalline CuZn30 alloy, copper, and AA1050 aluminium alloy have been studied to describe the crystal lattice rotation during shear bands formation. The hat-shaped specimens were deformed using a drop-hammer at the strain rate of 560 s-1. Microstructure evolution was investigated using optical microscopy, whereas texture changes were examined with the use of a scanning electron microscope equipped with the EBSD facility. The microstructural observations were correlated with nanohardness measurements to evaluate the mechanical properties of the sheared regions. The analyses demonstrate the gradual nature of the shear banding process, which can be described as a mechanism of the bands nucleation and then successive growth rather than as an abrupt instability. It was found that regardless of the initial orientation of the grains inside the sheared region, a well-defined tendency of the crystal lattice rotation is observed. This rotation mechanism leads to the formation of specific texture components of the sheared region, different from the one observed in a weakly or non-deformed matrix. During the process of rotation, one of the {111} planes in each grain of the sheared region ‘tends’ to overlap with the plane of maximum shear stresses and one of the <110> or <112> directions align with the shear direction. This allows slip propagation through the boundaries between adjacent grains without apparent change in the shear direction. Finally, in order to trace the rotation path, transforming the matrix texture components into shear band, rotation axis and angles were identified.
Słowa kluczowe
Twórcy
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
autor
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  • Polish Academy of Sciences, Institute of Metallurgy and Materials Science, 25 Reymonta Str., 30-059 Krakow, Poland
  • Opole University of Technology, Faculty of Mechanics, 76 Prószkowska Str., 45-758 Opole, Poland
Bibliografia
  • [1] C. Zener, J.H. Hollomon, Effect of strain rate upon plastic flow of steel, J. Appl. Phys. 15, 22-32 (1944). DOI: https://doi.org/10.1063/1.1707363
  • [2] F. Adcock, The internal mechanism of cold work and recrystallization in cupro-nickel, J. Inst. Met. 27, 73-105 (1922).
  • [3] R.C. Batra, Z.G. Wei, Shear bands due to heat flux prescribed at boundaries, Int. J. Plast. 22, 1-15 (2006). DOI: https://doi.org/10.1016/j.ijplas.2005.01.003
  • [4] T. Wright, Physics and Mathematics of Adiabatic Shear Bands, Appl. Mech. Rev. 56, B41-B43 (2003). DOI: https://doi.org/10.1115/1.1566401
  • [5] S. Osovski, D. Rittel, P. Landau, A. Venkert, Microstructural effects on adiabatic shear band formation, Scr. Mater. 66, 9-12 (2012). DOI: https://doi.org/10.1016/j.scriptamat.2011.09.014
  • [6] V.F. Nesterenko, M.A. Meyers, J.C. LaSalvia, M.P. Bondar, Y.J. Chen, Y.L. Lukyanov, Shear localization and recrystallization in high-strain, high-strain-rate deformation of tantalum, Mater. Sci. Eng. A. 229, 23-41 (1997). DOI: https://doi.org/10.1016/s0921-5093(96)10847-9
  • [7] M.A. Meyers, G. Subhash, B.K. Kad, L. Prasad, Evolution of microstructure and shear-band formation in α-hcp titanium, Mech. Mater. 17, 175-193 (1994). DOI: https://doi.org/10.1016/0167-6636(94)90058-2
  • [8] M.A. Meyers, Y.B. Xu, Q. Xue, M.T. Pérez-Prado, T.R. McNelley, Microstructural evolution in adiabatic shear localization in stainless steel, Acta Mater. 51, 1307-1325 (2003). DOI: https://doi.org/10.1016/S1359-6454(02)00526-8
  • [9] F. Martinez, L.E. Murr, A. Ramirez, M.I. Lopez, S.M. Gaytan, Dynamic deformation and adiabatic shear microstructures associated with ballistic plug formation and fracture in Ti-6Al-4V targets, Mater. Sci. Eng. A. 454-455, 581-589 (2007). DOI: https://doi.org/10.1016/j.msea.2006.11.097
  • [10] D. Rittel, P. Landau, A. Venkert, Dynamic recrystallization as a potential cause for adiabatic shear failure, Phys. Rev. Lett. 101, 2-5 (2008). DOI: https://doi.org/10.1103/PhysRevLett.101.165501
  • [11] B. Huang, X. Miao, X. Luo, Y. Yang, Y. Zhang, Microstructure and texture evolution near the adiabatic shear band (ASB) in TC17 Titanium alloy with starting equiaxed microstructure studied by EBSD, Mater. Charact. 151, 151-165 (2019). DOI: https://doi.org/10.1016/j.matchar.2019.03.009.
  • [12] S. Zhu, Y. Guo, Q. Ruan, H. Chen, Y. Li, D. Fang, Formation of adiabatic shear band within Ti-6Al-4V: An in-situ study with high-speed photography and temperature measurement, Int. J. Mech. Sci. 171, 105401 (2020). DOI: https://doi.org/10.1016/j.ijmecsci.2019.105401
  • [13] Y.B. Xu, M.A. Meyers, Deformation, Phase Transformation and Recrystallization in the shear bands induced by high-strain rate loading in titanium and its allots, J. Mater. Sci. Technol. 22, 737-746 (2006). DOI: https://www.jmst.org/CN/Y2006/V22/I06/737
  • [14] J.A. Hines, K.S. Vecchio, S. Ahzi, A model for microstructure evolution in adiabatic shear bands, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 29, 191-203 (1998). DOI: https://doi.org/10.1007/s11661-998-0172-4
  • [15] D.R. Chichili, K.T. Ramesh, K.J. Hemker, The high-strain-rate response of alpha-titanium: Experiments, deformation mechanisms and modeling, Acta Mater. 46, 1025-1043 (1998). DOI: https://doi.org/10.1016/S1359-6454(97)00287-5
  • [16] D.K. Yang, P. Cizek, P.D. Hodgson, C.E. Wen, Microstructure evolution and nanograin formation during shear localization in cold-rolled titanium, Acta Mater. 58, 4536-4548 (2010). DOI: https://doi.org/10.1016/j.actamat.2010.05.007
  • [17] A.R. Shahan, A.K. Taheri, Adiabatic shear bands in titanium and titanium alloys: a critical review, Mater. Des. 14, 243-250 (1993). DOI: https://doi.org/10.1016/0261-3069(93)90078-A
  • [18] D.G. Lee, Y.G. Kim, D.H. Nam, S.M. Hur, S. Lee, Dynamic deformation behavior and ballistic performance of Ti-6Al-4V alloy containing fine α2 (Ti3Al) precipitates, Mater. Sci. Eng. A. 391, 221-234 (2005). DOI: https://doi.org/10.1016/j.msea.2004.08.076
  • [19] X. Liu, C. Tan, J. Zhang, F. Wang, H. Cai, Correlation of adiabatic shearing behavior with fracture in Ti-6Al-4V alloys with different microstructures, Int. J. Impact Eng. 36, 1143-1149. (2009). DOI: https://doi.org/10.1016/j.ijimpeng.2008.12.007
  • [20] S.C. Liao, J. Duffy, Adiabatic shear bands in a TI-6A1-4V titanium alloy, J. Mech. Phys. Solids. 46, 2201-2231 (1998). DOI: https://doi.org/10.1016/S0022-5096(98)00044-1
  • [21] D. Rittel, Z.G. Wang, M. Merzer, Adiabatic shear failure and dynamic stored energy of cold work, Phys. Rev. Lett. 96, 1-4 (2006). DOI: https://doi.org/10.1103/PhysRevLett.96.075502
  • [22] J. Duffy, Y.C. Chi, On the measurement of local strain and temperature during the formation of adiabatic shear bands, Mater. Sci. Eng. A. 157, 195-210 (1992). DOI: https://doi.org/10.1016/0921-5093(92)90026-W
  • [23] H. Paul, A. Morawiec, E. Bouzy, J.J. Fundenberger, A. Piatkowski, Brass-Type Shear Bands and their Influence on Texture Formation, Metall. Mater. Trans. A. 35A, 3775-3786 (2004). DOI: https://doi.org/10.1007/s11661-004-0283-5
  • [24] H. Paul, J.H. Driver, C. Maurice, A. Piatkowski, The role of shear banding on deformation texture in low stacking fault energy metals as characterized on model Ag crystals, Acta Mater. 55, 575-588 (2007). DOI: https://doi.org/10.1016/j.actamat.2006.08.051
  • [25] H. Paul, A. Morawiec, J.H. Driver, E. Bouzy, On twinning and shear banding in a Cu-8 at.% Al alloy plane strain compressed at 77 K, Int. J. Plast. 25, 1588-1608 (2009). DOI: https://doi.org/10.1016/j.ijplas.2008.10.003
  • [26] C.S. Hong, N.R. Tao, X. Huang, K. Lu, Nucleation and thickening of shear bands in nano-scaletwin_matrix lamellae of a Cu-Al alloy processed by dynamic plastic deformation 33, 379 (2010).
  • [27] H. Paul, J.H. Driver, C. Maurice, Z. Jasien, Crystallographic aspects of the early stages of recrystallisation in brass-type shear bands, Acta Mater. 50, 4339-4355 (2002).
  • [28] A. Huot, R.A. Schwarzer, J.H. Driver, Texture of shear bands in Al-Mg 3% (AA5182) measured by BKD, Mater. Sci. Forum. 273-275, 319-326 (1998). DOI: https://doi.org/10.4028/www.scientific.net/msf.273-275.319
  • [29] D. Dorner, Y. Adachi, K. Tsuzaki, Periodic crystal lattice rotation in microband groups in a bcc metal, Scr. Mater. 57, 775-778 (2007). DOI: https://doi.org/10.1016/j.scriptamat.2007.06.048
  • [30] D. Dorner, S. Zaefferer, D. Raabe, Retention of the Goss orientation between microbands during cold rolling of an Fe3%Si single crystal, Acta Mater. 55, 2519-2530 (2007). DOI: https://doi.org/10.1016/j.actamat.2006.11.048
Uwagi
1. This research was supported by the Polish National Centre of Science (NCN) within project no.: UMO-2018/31/B/ST8/00942 (Opus).
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-247e7694-0def-47f9-b544-66f5955a0406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.