PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

An investigation of the heat transfer coefficient during refrigerant evaporation

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Badanie współczynnika przejmowania ciepła podczas odparowania czynnika chłodniczego
Języki publikacji
EN
Abstrakty
EN
This study presents the experimental research data on the local heat transfer coefficient during refrigerant expansion evaporation in horizontal pipe minichannel. Heat exchange took place between the heated channel wall and the working fluid flowing inside (R134a and R404A). AISI 316 stainless steel pipe minichannels with an internal diameter in the range of di = 0.64 - 2.30 mm were used. The so-called minichannels are widely used to build miniature heat exchangers. Tests carried out in the range of mass flux density G = 350 - 1400 kg/(m2s) and heat flux density reaching q = 90 kW/m2 allowed to observe the occurrence of the flashing phenomenon, not observed in conventional channels. It has been shown that in the zone covered by the flashing phenomenon, the heat exchange conditions deteriorate, and the value of the local heat transfer coefficient in this zone may drop by up to 50%.
PL
W pracy przedstawiono wyniki badań eksperymentalnych lokalnego współczynnika przejmowania ciepła podczas odparowywania czynnika chłodniczego w minikanale poziomym. Wymiana ciepła odbywała się pomiędzy ogrzewaną ścianką kanału a przepływającym wewnątrz czynnikiem roboczym (R134a i R404A). Zastosowano minikanały rurowe ze stali nierdzewnej AISI 316 o średnicy wewnętrznej w zakresie di = 0,64 - 2,30 mm. Tak zwane minikanały są szeroko stosowane do budowy miniaturowych wymienników ciepła. Badania przeprowadzone w zakresie gęstości strumienia masy G = 350 - 1400 kg/(m2s) i gęstości strumienia ciepła dochodzącej do q = 90 kW/m2 pozwoliły zaobserwować występowanie zjawiska flashingu, nie obserwowanego w konwencjonalnych kanałach. Wykazano, że w strefie objętej zjawiskiem flashingu pogarszają się warunki wymiany ciepła, a wartość lokalnego współczynnika przejmowania ciepła w tej strefie może spaść nawet o 50%.
Czasopismo
Rocznik
Tom
Strony
15--20
Opis fizyczny
Bibliogr. 36 poz., rys., tab., wzory
Twórcy
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
  • Koszalin University of Technology, Faculty of Mechanical Engineering, Koszalin, Poland
Bibliografia
  • [1] Ü. Çolak, O. Özdere, Comparative analysis of pressure vessel integrity for various LOCA conditions, Journal of Nuclear Materials. 297 (2001) 271-278. https://doi.org/10.1016/S0022-3115(01)00641-9.
  • [2] I. Aoki, Analysis of characteristics of water flash evaporation under low-pressure conditions, Heat Transfer - Asian Research. 29 (2000) 22-33. https://doi.org/10.1002/(sici)1523-1496(200001)29:1<22::aidhtj3>3.0.co;2-v.
  • [3] D. Saury, S. Harmand, M. Siroux, Experimental study of flash evaporation of a water film, n.d. www.elsevier.com/locate/ijhmt.
  • [4] D. Saury, S. Harmand, M. Siroux, Flash evaporation from a water pool: Influence of the liquid height and of the depressurization rate, International Journal of Thermal Sciences. 44 (2005) 953-965. https://doi.org/10.1016/j.ijthermalsci.2005.03.005.
  • [5] M. Kruzel, T. Bohdal, K. Dutkowski, W. Kuczy, Current Research Trends in the Process of Condensation of Cooling Zeotropic Mixtures in Compact Condensers, (2022).
  • [6] T. Bohdal, H. Charun, M. Kruzel, M. Sikora, High pressure refrigerants condensation in vertical pipe minichannels, Int J Heat Mass Transf. (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.02.037.
  • [7] T. Bohdal, H. Charun, M. Kruzel, M. Sikora, An investigation of heat transfer coefficient during refrigerants condensation in vertical pipe minichannels, in: E3S Web of Conferences, 2018. https://doi.org/10.1051/e3sconf/20187002001.
  • [8] K. Dutkowski, Air-Water Two-Phase Frictional Pressure Drop in Minichannels, Heat Transfer Engineering. 31 (2010) 321-330. https://doi.org/10.1080/01457630903312080.
  • [9] I. Zaborowska, H. Grzybowski, G. Rafałko, R. Mosdorf, Boiling dynamics in parallel minichannel system with different inlet solutions, Int J Heat Mass Transf. 165 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2020.120655.
  • [10] B.M. Gasanov, Boiling of disperse-phase droplets in a forced flow of emulsion in a minichannel, Int J Heat Mass Transf. 142 (2019). https://doi.org/10.1016/j.ijheatmasstransfer.2019.118454.
  • [11] M. Azzolin, S. Bortolin, Condensation and flow boiling heat transfer of a HFO/HFC binary mixture inside a minichannel, International Journal of Thermal Sciences. 159 (2021). https://doi.org/10.1016/j.ijthermalsci.2020.106638.
  • [12] M. Piasecka, Correlations for flow boiling heat transfer in minichannels with various orientations, Int J Heat Mass Transf. 81 (2015) 114-121. https://doi.org/10.1016/j.ijheatmasstransfer.2014.09.063.
  • [13] M. Morisaki, S. Minami, K. Miyazaki, T. Yabuki, Direct local heat flux measurement during water flow boiling in a rectangular minichannel using a MEMS heat flux sensor, Exp Therm Fluid Sci. 121 (2021). https://doi.org/10.1016/j.expthermflusci.2020.110285.
  • [14] H. Grzybowski, R. Mosdorf, Dynamics of pressure drop oscillations during flow boiling inside minichannel, International Communications in Heat and Mass Transfer. 95 (2018) 25-32. https://doi.org/10.1016/j.icheatmasstransfer.2018.03.025.
  • [15] Z. Feng, X. Luo, J. Zhang, J. Xiao, W. Yuan, Effects of electric field on flow boiling heat transfer in a vertical minichannel heat sink, Int J Heat Mass Transf. 124 (2018) 726-741. https://doi.org/10.1016/j.ijheatmasstransfer.2018.03.067.
  • [16] J. Zhang, X. Luo, Z. Feng, F. Guo, Effects of pin and wire electrodes on flow boiling heat transfer enhancement in a vertical minichannel heat sink, Int J Heat Mass Transf. 136 (2019) 740-754. https://doi.org/10.1016/j.ijheatmasstransfer.2019.03.043.
  • [17] Y.S. See, K.C. Leong, Entropy generation for flow boiling on a single semi-circular minichannel, Int J Heat Mass Transf. 154 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119689.
  • [18] Y. Lan, Z. Feng, Z. Hu, S. Zheng, J. Zhou, Y. Zhang, Z. Huang, J. Zhang, W. Lu, Experimental investigation on the effects of swirling flow on flow boiling heat transfer and instability in a minichannel heat sink, Appl Therm Eng. 219 (2023). https://doi.org/10.1016/j.applthermaleng.2022.119512.
  • [19] B. Markal, A. Candan, O. Aydin, M. Avci, Experimental investigation of flow boiling in single minichannels with low mass velocities, International Communications in Heat and Mass Transfer. 98 (2018) 22-30. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.002.
  • [20] F. Yu, X. Luo, B. He, J. Xiao, W. Wang, J. Zhang, Experimental investigation of flow boiling heat transfer enhancement under ultrasound fields in a minichannel heat sink, Ultrason Sonochem. 70 (2021). https://doi.org/10.1016/j.ultsonch.2020.105342.
  • [21] J. Xiao, J. Zhang, Experimental investigation on flow boiling bubble motion under ultrasonic field in vertical minichannel by using bubble tracking algorithm, Ultrason Sonochem. 95 (2023) 106365. https://doi.org/10.1016/j.ultsonch.2023.106365.
  • [22] S. Hong, C. Dang, E. Hihara, Experimental investigation on flow boiling characteristics of radial expanding minichannel heat sinks applied for two-phase flow inlet, Int J Heat Mass Transf. 151 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119316.
  • [23] S. Hożejowska, R.M. Kaniowski, M.E. Poniewski, Experimental investigations and numerical modeling of 2D temperature fields in flow boiling in minichannels, Exp Therm Fluid Sci. 78 (2016) 18-29. https://doi.org/10.1016/j.expthermflusci.2016.05.005.
  • [24] B. He, P. /Dr X. Luo, F. Yu, J. Zhou, J. Zhang, Flow boiling characteristics in bi-porous minichannel heat sink sintered with copper woven tape, Int J Heat Mass Transf. 158 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119988.
  • [25] L. Wang, X. Luo, J. Zhang, B. He, Z. Peng, Flow boiling characteristics of minichannel heat sink with artificial conical cavities array under electric field, Int J Heat Mass Transf. 173 (2021). https://doi.org/10.1016/j.ijheatmasstransfer.2021.121286.
  • [26] Y. Sun, L. Zhang, H. Xu, X. Zhong, Flow boiling enhancement of FC-72 from microporous surfaces in minichannels, Exp Therm Fluid Sci. 35 (2011) 1418-1426. https://doi.org/10.1016/j.expthermflusci.2011.05.010.
  • [27] J. Zhou, X. Luo, Y. Pan, D. Wang, J. Xiao, J. Zhang, B. He, Flow boiling heat transfer coefficient and pressure drop in minichannels with artificial activation cavities by direct metal laser sintering, Appl Therm Eng. 160 (2019). https://doi.org/10.1016/j.applthermaleng.2019.113837.
  • [28] J. Zhou, X. Luo, C. Li, L. Liang, G. Wang, B. He, Z.Q. Tian, Flow boiling heat transfer enhancement under ultrasound field in minichannel heat sinks, Ultrason Sonochem. 78 (2021). https://doi.org/10.1016/j.ultsonch.2021.105737.
  • [29] A. Ateş, S. Çelik, V. Yağcı, M. Çağlar Malyemez, M. Parlak, A.K. Sadaghiani, A. Koşar, Flow boiling of dielectric fluid HFE - 7000 in a minichannel with pin fin structured surfaces, Appl Therm Eng. 223 (2023). https://doi.org/10.1016/j.applthermaleng.2023.120045.
  • [30] B.M. Gasanov, Flow boiling of water and emulsions with a low-boiling disperse phase in minichannels, Int J Heat Mass Transf. 126 (2018) 9-14. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.143.
  • [31] P.F. da Silva, J.D. de Oliveira, J.B. Copetti, M.H. Macagnan, E.M. Cardoso, Flow boiling pressure drop and flow patterns of R-600a in a multiport minichannels, International Journal of Refrigeration. (2023). https://doi.org/10.1016/j.ijrefrig.2023.01.001.
  • [32] M. Klugmann, P. Dąbrowski, D. Mikielewicz, Flow distribution and heat transfer in minigap and minichannel heat exchangers during flow boiling, Appl Therm Eng. 181 (2020). https://doi.org/10.1016/j.applthermaleng.2020.116034.
  • [33] K. Strąk, M. Piasecka, B. Maciejewska, Spatial orientation as a factor in flow boiling heat transfer of cooling liquids in enhanced surface minichannels, Int J Heat Mass Transf. 117 (2018) 375-387. https://doi.org/10.1016/j.ijheatmasstransfer.2017.10.019.
  • [34] K. Strąk, M. Piasecka, The applicability of heat transfer correlations to flows in minichannels and new correlation for subcooled flow boiling, Int J Heat Mass Transf. 158 (2020). https://doi.org/10.1016/j.ijheatmasstransfer.2020.119933.
  • [35] K. Płaczkowski, M. Grabowski, M.E. Poniewski, Novel twofold use of photographic technique for simultaneous flow boiling image recording and void fraction computation in a mini-channel experiment, Energies (Basel). 14 (2021). https://doi.org/10.3390/en14154478.
  • [36] M. Piasecka, B. Maciejewska, A. Piasecki, Heat Transfer Calculations during Flow in Mini-Channels with Estimation of Temperature Uncertainty Measurements, Energies (Basel). 16 (2023) 1222. https://doi.org/10.3390/en16031222
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-247c42e1-f831-439e-86c8-c2844ac7de16
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.