PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Inexpensive, high-performance STM32-based software PLL for series-resonant inverters

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Niedrogie, wydajne oprogramowanie PLL oparte na STM32 do szeregowych falowników rezonansowych
Języki publikacji
EN
Abstrakty
EN
This paper presents an inexpensive, high-performance STM32-based software phase-locked loop (PLL) system suitable for seriesresonant inverters (SRIs) with various control methods. The paper shows how to achieve high resolution in setting the voltage-current time-shift with the proposed PLL using the microcontroller of the STM32G4x4 line, shows the features of the operation and implementation of this PLL. The proposed software PLL is implemented in the same microcontroller that controls the SRI output current, which makes it possible to simplify the structure of the SRI control system.
PL
W niniejszym artykule przedstawiono niedrogi, wysokowydajny system oparty na oprogramowaniu STM32 z pętlą synchronizacji fazowej (PLL), odpowiedni dla falowników rezonansowych (SRI) z różnymi metodami sterowania. Artykuł pokazuje jak osiągnąć wysoką rozdzielczość w ustawianiu przesunięcia czasowo-prądowego z proponowanym PLL z wykorzystaniem mikrokontrolera linii STM32G4x4, pokazuje cechy działania i realizacji tego PLL. Proponowane oprogramowanie PLL jest zaimplementowane w tym samym mikrokontrolerze, który steruje prądem wyjściowym SRI, co pozwala na uproszczenie struktury układu sterowania SRI.
Rocznik
Strony
132--138
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Institute of Electrodynamics of the National Academy of Sciences of Ukraine, 56 Peremohy Avenue, office 457, 03057, Kyiv, Ukraine
Bibliografia
  • [1] Kalita K., Handique J., and Bezboruah T., Hardware Implementation of a Phase-Locked Loop for Communication Systems, Proc. IMECS, (2009), 18-20
  • [2] Kwon Y.-S., Yoo S-B., and Hyun D-S, Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy, Proc. IEEE APEC, (1999), 575-581, doi: 10.1109/APEC.1999.749738
  • [3] Okuno A., Kawano H., Sun J., Kurokawa M., Kojina A., and Nakaoka M., Feasible development of soft-switched SIT inverter with load-adaptive frequency-tracking control scheme for induction heating, IEEE Trans. Ind. Appl., 34 (1998), No. 4, 713-718, doi: 10.1109/28.703962.
  • [4] Bayindir N.S., Kukrer O., and Yakup M., DSP-based PLL-controlled 50-100 kHz 20 kW high-frequency induction heating system for surface hardening and welding applications, IEE Proc. Electric Power Appl., 150 (2003), No. 3, 365-371, doi: 10.1049/ip-epa:20030096
  • [5] Martín-Segura G., Sala-Pérez P., Ferrater-Simón C., López-Mestre J., Bergas-Jané J., and Montesinos-Miracle D., All-digital DSP-based phase-locked loop for induction heating applications, Int. Trans. Electr. Energ. Syst., 23 (2013), No. 7, 1095-1106, doi: 10.1002/etep.1640
  • [6] Herasymenko P., Hutsaliuk V., Pavlovskyi V., and Yurchenko O., A software phase-locked loop of control system of a series-resonant voltage-source inverter for induction heating equipment, Proc. IEEE UKRCON, (2017), 384-389, doi: 10.1109/UKRCON.2017.8100515
  • [7] Li H., Li Y., and Peng Y., FPGA-Based All Digital Phase-Locked Loop Controlled Induction Heating Power Supply Operating at Optimized ZVS Mode, Proc. IEEE TENCON, (2006), 1-4, doi: 10.1109/TENCON.2006.344089
  • [8] Puyal D., Barragan L.A., Acero J., Burdio J.M., and Millan I., An FPGA-Based Digital Modulator for Full- or Half-Bridge Inverter Control, IEEE Trans. Power Electron., 21 (2006), No. 5, 1479-1483, doi: 10.1109/TPEL.2006.880234
  • [9] Sheng X., Shi L., and Fan M., An Improved Pulse Density Modulation of High-Frequency Inverter in ICPT System, IEEE Trans. Ind. Electron., 68 (2021), No. 9, 8017-8027, doi: 10.1109/TIE.2020.3013782
  • [10] Herasymenko P., Inexpensive High-Performance STM32based Software PLL for Series-Resonant Inverters in Induction Heating Equipment, Proc. IEEE ATEE, (2021), 1-6, doi: 10.1109/ATEE52255.2021.9425319
  • [11] Chen M.-P., Chen J-K., Murata K., Nakahara M., and Harada K., On the switching surge in the current resonant inverter for the induction furnace application, IEEJ Trans. Ind. Appl., 121 (2001), No. 6, 658-668, doi: 10.1541/ieejias.121.658
  • [12] Swadowski M., Zygon K., Jaderko A., High-frequency converters with resonant circuits working with multiple converter frequency on an example of use in induction heaters, Przeglad Elektrotechniczny, 94 (2018), Nr. 5, 143-146 (in Polish)
  • [13] Millan I., Burdio J.M., Acero J., Lucia O., Llorente S., Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating, IET Power Electronics, 4 (2011), No. 5, 587-592, doi: 10.1049/iet-pel.2010.0107
  • [14] Fujita H. and Akagi H., Pulse-density-modulated power control of a 4 kW, 450 kHz voltage-source inverter for induction melting applications, IEEE Trans. Ind. Appl., 32 (1996), No. 2, 279-286, doi: 10.1109/28.491475
  • [15] Esteve V., et al., Enhanced Pulse-Density-Modulated PowerControl for High-Frequency Induction Heating Inverters, IEEE Trans. Ind. Electron., 62 (2015), No. 11, 6905-6914, doi: 10.1109/TIE.2015.2436352
  • [16] Namadmalan A., Universal Tuning System for Series-Resonant Induction Heating Applications, IEEE Trans. Ind. Electron., 64 (2017), No. 4, 2801-2808, doi: 10.1109/TIE.2016.2638399
  • [17] Liu W., Chau K.T., Lee C.H.T., Han W., and Tian X., Low-Frequency-Switching High-Frequency-Resonating Wireless Power Transfer, IEEE Trans. Magn., 57 (2021), No. 2, 1-8, doi: 10.1109/TMAG.2020.3007156
  • [18] Herasymenko P., Combined PS-PDM control method for voltage-source series-resonant inverter, Przeglad Elektrotechniczny, 97 (2021), No. 5, 40-45, doi: 10.15199/48.2021.05.07
  • [18] Mucko J., The control methods of series resonant inverters which make possible the simultaneous work of transistors as the ZVS and the "almost ZCS” switches, Przeglad Elektrotechniczny, 86 (2010), No. 6, 137-142 (in Polish)
  • [19] Wu K.Y., Zhang T., He Z.W., Jiang X.M., and Liu X.G., STM32-based digital charging power supply, Proc. Int. Conf. Electron., Elect. Eng. and Inf. Science, (2015), 37-47, doi: 10.1142/9789814740135_0005
  • [20] AN4013 - Application note “STM32 cross-series timer overview”. Available online: https://www.st.com/content/ccc/resource/technical/document/application_note/54/0f/67/eb/47/34/45/40/DM00042534.pdf/files/DM00042534.pdf/jcr:content/translations/en.DM00042534.pdf
  • [21] AN4539 - Application note “HRTIM cookbook”. Available online: https://www.st.com/content/ccc/resource/technical/document/application_note/13/d6/48/9d/11/11/4c/08/DM00121475.pdf/files/DM00121475.pdf/jcr:content/translations/en.DM00121475.pdf
  • [22] Herasymenko P., Pavlovskyi V., Yurchenko O., A series-resonant inverter with extended topology and pulse-density-modulation control for induction heating applications, Int. Jour. of Power Electron. and Drive Sys., Vol. 13 (2022)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24730bca-b0fb-49aa-bbc9-cc371494d00f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.