Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, the onset of convection in an elastico-viscous Walters’ (model B’) nanofluid horizontal layer heated from below is considered. The Walters’ (model B’) fluid model is employed to describe the rheological behavior of the nanofluid. By applying the linear stability theory and a normal mode analysis method, the dispersion relation has been derived. For the case of stationary convection, it is observed that the Walters’ (model B’) elastico-viscous nanofluid behaves like an ordinary Newtonian nanofluid. The effects of the various physical parameters of the system, namely, the concentration Rayleigh number, Prandtl number, capacity ratio, Lewis number and kinematics visco-elasticity coefficient on the stability of the system has been numerically investigated. In addition, sufficient conditions for the non-existence of oscillatory convection are also derived.
Rocznik
Tom
Strony
235--244
Opis fizyczny
Bibliogr. 30, wykr.
Twórcy
autor
- Department of Mathematics, Sidharth Govt. College, Nadaun -177033 Himachal Pradesh, India
autor
- Department of Mathematics, Government P. G. College, Dhaliara-177103 Himachal Pradesh, India
Bibliografia
- [1] S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability, Dover Publication, New York, 1961.
- [2] P.K. Bhatia and J.M. Steiner, “Thermal instability of viscoelastic fluid in hydromagnetics”, J. Math. Anal. Appl. 41 271-282 (1973).
- [3] J.W. Scanlon and L.A. Segel, “Effect of suspended particles on onset of Bénard convection”, Phys. Fluids 16, 1573-1578 (1973).
- [4] S. Choi, “Enhancing thermal conductivity of luids with nanoparticles”, in: D. A. Siginer and H. P. Wang (eds), Developments and Applications of Non-Newtonian Flows, ASME FED 231/MD 66, 99-105 (1995).
- [5] J. Buongiorno, “Convective transport in nanofluids”, ASME J. Heat Transfer 128, 240-250 (2006).
- [6] D.Y. Tzou, “Thermal instability of nanofluids in natural convection”, Int. J. Heat and Mass Transfer 51, 2967-2979 (2008).
- [7] Z. Alloui, P. Vasseur, and M. Reggio, “Natural convection of nanofluids in a shallow cavity heated from below”, Int. J. Thermal Science 50, 385-393 (2011).
- [8] Y. Dhananjay, G.S. Agrawal, and R. Bhargava, “Rayleigh Benard convection in nanofluid”, Int. J. Appl. Math. Mech. 7, 61-76 (2011).
- [9] A.V. Kuznetsov and D.A. Nield, “Effect of local thermal nonequilibrium on the onset of convection in a porous medium layer saturated by a nanofluid”, Transp. Porous Media 83, 425-436 (2010).
- [10] A.V. Kuznetsov and D.A. Nield, “Thermal instability in a porous medium layer saturated by a nanofluid: Brinkman model”, Transp. Porous Media 81, 409-422 (2010).
- [11] A.V. Kuznetsov and D.A. Nield, “The onset of double-diffusive nanofluid convection in a layer of saturated porous medium”, Transp. Porous Media 85, 941-951 (2010).
- [12] D.A. Nield and A.V. Kuznetsov, “Thermal instability in a porous medium layer saturated by a nanofluid”, Int. J. Heat Mass Transf. 52, 5796-5801 (2009).
- [13] D.A. Nield and A.V. Kuznetsov, “The onset of convection in a horizontal nanofluid layer of finite depth”, Eur. J. Mechanics - B/Fluids 29, 217-223 (2010).
- [14] D.A. Nield and A.V. Kuznetsov, “The onset of convection in a layer of cellular porous material: effect of temperaturedependent conductivity arising from radiative transfer”, J. Heat Transfer 132, 074503 (2010).
- [15] D.A. Nield and A.V. Kuznetsov, “The onset of double-diffusive convection in a nanofluid layer” Int. J. Heat and Fluid Flow 32, 771-776 (2011).
- [16] D.A. Nield and A.V. Kuznetsov, “The effect of vertical through flow on thermal instability in a porous medium layer saturated by a Nanofluid”, Transp. in Porous Media 87, 765-775 (2011b).
- [17] R. Chand and G.C. Rana, “On the onset of thermal convection in rotating nanofluid layer saturating a Darcy-Brinkman porous medium”, Int. J. Heat Mass Transfer 55, 5417-5424 (2012).
- [18] R. Chand and G.C. Rana, “Oscillating convection of nanofluid in porous medium”, Transp. Porous Med. 95, 269-285 (2012).
- [19] B.A. Tom and D.J. Strawbridge, Trans. Faraday Soc. 49, 1225 (1953).
- [20] J.G. Oldroyd, “Non-Newtonian effects in steady motion of some idealized elastico-viscous liquids”, Proc. Roy. Soc. (London) A245, 278-286 (1958).
- [21] K. Walters’, “The solution of flow problems in the case of materials with memory”, J. Mecanique 2, 469-478 (1962).
- [22] V. Sharma and G.C. Rana, “Thermal instability of a Walters’ (Model B’) elastico-viscous fluid in the presence of variable gravity field and rotation in porous medium”, J. Non-Equilib. Thermodyn. 26, 31-40 (2001).
- [23] U. Gupta and P. Aggarwal, “Thermal instability of compressible Walters’ (model B’) fluid in the presence of hall currents and suspended particles”, Thermal Science 15, 487-500 (2011).
- [24] G.C. Rana and S. Kumar, “Thermal instability of Walters’ (Model B’) elastico-viscous rotating fluid permitted with suspended particles and variable gravity field in porous medium”, Engineering Trans. 60, 55-68 (2012).
- [25] G.C. Rana and S.K. Kango, “Effect of rotation on thermal instability of compressible Walters’ (model B’) elastico-viscous fluid in porous medium”, JARAM 3, 44-57 (2011).
- [26] G.C. Rana and V. Sharma, “Hydromagnetic Thermosolutal instability of Walters’ (model B’) rotating fluid permeated with suspended particles in porous medium”, Int. J. Multiphysics 5, 325-338 (2011).
- [27] I.S. Shivakumara, J. Lee, M.S. Malashetty, and S. Sureshkumara, “Effect of thermal modulation on the onset of thermal convection in Walters’ B viscoelastic fluid in a porous medium”, Transp. Porous Media 87, 291-307 (2011).
- [28] D.A. Nield, “A note on the onset of convection in a layer of a porous medium saturated by a non-Newtonian nanofluid of power-law type”, Transp. Porous Medium 86, 121-123 (2010).
- [29] L.J. Sheu, “Thermal instability in a porous medium layer saturated with a viscoelastic nanofluid”, Transp. Porous Med. 88, 461-477 (2011).
- [30] G.C. Rana, R. Chand, and S. Kumar, “Thermosolutal convection in compressible Walters’ (model B’) fluid permeated with suspended particles in a Brinkman porous medium”, J. Computational Multiphase Flow 4, 211-224 (2012).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-246a79cf-dae0-4dad-b14c-685bd989e78c