PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Semiconductor contact layer characterization in a context of hall effect measurements

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A revision of the standard approach to characterization of thin-semiconductor-layer Hall samples has been proposed. Our results show that simple checking of I(V) curve linearity at room temperature might be insufficient for correct determination of bias conditions of a sample before measurements of Hall effect. It is caused by the nonlinear behaviour of electrical contact layers, which should be treated together with the tested layer a priori as a metal-semiconductor-metal (MSM) structure. Our approach was examined with a Be-doped p-type InAs epitaxial layer, with four gold contacts. Despite using full high-quality photolithography a significant asymmetry in maximum differential resistance (Rd) values and positions relative to zero voltage (or current) value was observed for different contacts. This suggests that such characterization should be performed before each high-precision magneto-transport measurement in order to optimize the bias conditions.
Rocznik
Strony
109--114
Opis fizyczny
Bibliogr. 18 poz., rys., tab.
Twórcy
  • Military University of Technology, Institute of Applied Physics, Urbanowicza 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, Urbanowicza 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, Urbanowicza 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, Urbanowicza 2, 00-908 Warsaw, Poland
  • Military University of Technology, Institute of Applied Physics, Urbanowicza 2, 00-908 Warsaw, Poland
Bibliografia
  • [1] Hall, E.H. (1879). On a New Action of the Magnet on Electric Currents. American Journal of Mathematics, 2(3), 287-292.
  • [2] Ramsden, E. (2006). Hall-Effect Sensors, Theory and Applications. 2nd ed.: Elsevier Inc.
  • [3] van der Pauw, L.J. (1958). A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape. Philips Techical Review, 20, 220-224.
  • [4] Montgomery, H.C. (1971). Method for Measuring Electrical Resistivity of Anisotropic Materials. Journal of Applied Physics, 42(7), 2971-975.
  • [5] Antoszewski, J., Faraone, L. (2004). Quantitative mobility spectrum analysis (QMSA) in multi-laver semiconductor structures. Opto-Electronics Review, 12(4), 347-352.
  • [6] Antoszewski, J., Umana-Membreno, G.A., Faraone, L. (2012). High-Resolution Mobility Spectrum Analysis of Multicarrier Transport in Advanced Infrared Materials. Journal of Electronic Materials, 41(10), 2816-2823.
  • [7] Woltjer, R., de Blank, M.J.M., Harris, J.J., Foxon, C.T., André, J.P. (1989). The Influence of Contacts on the Quantized Hall Effect. Location: Springer Berlin Heidelberg.
  • [8] Murata, M., Hasegawa, Y. (2013). Focused ion beam processing to fabricate ohmic contact electrodes on a bismuth nanowire for Hall measurements. Nanoscale Research Letters, 8(1), 400.
  • [9] Wang, Y., Ye, M., Weng, M., Li, J., Zhang, X., Zhang, H., Guo, Y., Pan, Y., Xiao, L., Liu, J., Pan, F., Lu, J. (2017). Electrical Contacts in Monolayer Arsenene Devices. ACS Applied Materials & Interfaces, 9(34), 29273-29284.
  • [10] Xu, H., Zhang, Z., Shi, R., Liu, H., Wang, Z., Wang, S., Peng, L.M. (2013). Batch-fabricated high-performance graphene Hall elements. Scientific Reports, 3, 1207.
  • [11] Taneja, D., Sfigakis, F., Croxall, A.F., Gupta, K.D., Narayan, V., Waldie, J., Farrer, I., Ritchie, D.A.(2016). N-type ohmic contacts to undoped GaAs/AlGaAs quantum wells using only front-sided processing: application to ambipolar FETs. Semiconductor Science and Technology, 31(6), 065013.
  • [12] Paun, M.A., Sallese, J.M., Kayal, M. (2013). Comparative Study on the Performance of Five Different Hall Effect Devices. Sensors, 13(2), 2093-2112.
  • [13] Elhadidy, H., Sikula, J., Franc, J. (2012). Symmetrical current-voltage characteristic of a metal-semiconductor-metal structure of Schottky contacts and parameter retrieval of a CdTe structure.
  • [14] Di Bartolomeo, A., Grillo, A., Urban, F., Iemmo, L., Giubileo, F., Luongo, G., Amato, G., Croin, L., Sun, L., Liang, S.J., Ang, L.K. (2018). Asymmetric Schottky Contacts in Bilayer MoS2 Field Effect Transistors. Advanced Functional Materials, 1800657.
  • [15] Boguski, J., Kolwas, K., Kubiszyn, L., Michalczewski, K., Piotrowski, J., Wrobel, J., Gorczyca, K., Keblowski, A., Martyniuk, P. (2018). Study on the specific contact resistance of evaporated or electroplated golden contacts to n- and p- type InAs epitaxial layers grown by MBE. Materials Science in Semiconductor Processing, 81, 60-63.
  • [16] Gorczyca, K., Boguski, J., Wrobel, J., Martyniuk, P. (2018). Selected technological aspects of preparation of semiconductor samples for Hall effect measurements. The 13th Conference Integrated Optics - Sensors, Sensing Structures and Methods. Location: SPIE.
  • [17] Kowalewski, A., Martyniuk, P., Markowska, O., Benyahia, D., Gawron, W., (2016). New wet etching solution molar ratio for processing T2SLs InAs/GaSb nBn MWIR infrared detectors grown on GaSb substrates. Materials Science in Semiconductor Processing, 41, 261-264.
  • [18] Heremans, J., (1993). Solid state magnetic field sensors and applications. Journal of Physics D: Applied Physics, 26(8), 1149.
Uwagi
EN
1. This study was carried out with the financial support from the Polish National Science Center (grant no. UMO-2015/17/B/ST5/01753).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2469f424-d551-465e-9e70-140f986393f2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.