PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A generalized equivalent temperature model in a time-varying environment

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Uogólniony model temperatury równoważnej w zmiennym w czasie otoczeniu
Języki publikacji
EN
Abstrakty
EN
Accelerated degradation test at high temperature level is a common method to accelerate the degradation of products by elevating temperature, and the obtained degradation data are then used to obtain the estimate of the performance at normal temperature after extrapolating the degradation through accelerating model. However, the normal temperature is ever-changing rather than constant. Therefore, a generalized equivalent temperature model based on power law degradation path is proposed to establish a connection between accelerated degradation data and degradation data at normal temperature. The model takes the equal degradation measure as a principle and the conclusion is demonstrated that the increments of the degradation under the same magnitude, same time and different orders of temperature stresses are same. The result shows that the empirical equivalent temperature model is a special case of the proposed model. The accuracy of the proposed model is finally demonstrated by a case study of nitrile rubber O-rings.
PL
Przyspieszone badania degradacji (badania starzeniowe) prowadzone w warunkach wysokiej temperatury stanowią powszechnie stosowaną metodę przyspieszania starzenia produktów poprzez podwyższanie temperatury. Otrzymane w takich badaniach dane degradacyjne wykorzystuje się do szacowania wydajności produktu w temperaturze normalnej na zasadzie ekstrapolacji. Głównym ograniczeniem tej metody jest fakt, że normalna temperatura nie jest stała lecz zmienia się w czasie. Dlatego też, aby skorelować dane z przyspieszonej degradacji z danymi dotyczącymi starzenia w normalnej temperaturze, zaproponowaliśmy uogólniony model temperatury równoważnej oparty na krzywej degradacji opisanej prawem potęgowym. W modelu przyjęto zasadę równego stopnia degradacji i wykazano, że przyrosty degradacji przy tej samej wartości i czasie działania naprężeń termicznych różnego rzędu są takie same. Wyniki pokazują, że empiryczny model temperatury równoważnej jest szczególnym przypadkiem proponowanego przez nas modelu. Trafność opisanego w pracy modelu wykazano na podstawie studium przypadku dotyczącego uszczelek nitrylowych, tzw. oringów.
Rocznik
Strony
432--440
Opis fizyczny
Bibliogr. 24 poz., rys., tab.
Twórcy
autor
  • College of Mechanical Engineering Nanjing University of Science and Technology no. 200, Xiaolingwei Street, Nanjing, China
autor
  • College of Mechanical Engineering Nanjing University of Science and Technology no. 200, Xiaolingwei Street, Nanjing, China
autor
  • Science and Technology on Combustion and Explosion Laboratory Xi'an Modern Chemistry Research Institute no. 168, Zhangba East Street, Xi'an, China
autor
  • College of Mechanical Engineering Nanjing university of Science and Technology Nanjing 210094, China
Bibliografia
  • 1. Chan C K, Boulanger M, Tortorella M. Analysis of parameter-degradation data using life-data analysis programs. Proceedings Annual Reliability and Maintainability Symposium 1994; 288-291, http://dx.doi.org/10.1109/RAMS.1994.291122.
  • 2. Cui Z, Liou J J, Yue Y. A new extrapolation method for long-term degradation prediction of deep-submicron MOSFETs. IEEE Transactions on Electron Devices 2003; 50(5): 1398-1401, http://dx.doi.org/10.1109/TED.2003.813473.
  • 3. Escobar L A, Meeker W Q. A review of accelerated test models. Statistical science 2006; 552-577, http://dx.doi. org/10.1214/088342306000000321.
  • 4. Huang J, Gao C, Cui W, et al. Lifetime prediction for tantalum capacitors with multiple degradation measures and particle swarm optimization based grey model. Journal of Central South University 2012; 19: 1302-1310, http://dx.doi.org/10.1007/s11771-012-1142-y.
  • 5. Iben I E T. Head reliability of AMR sensors based on thermal stress tests. IBM Journal of Research and Development 2003; 47(4): 415-428, http://dx.doi.org/10.1147/rd.474.0415.
  • 6. ISO/PRF Rubber, vulcanized or thermoplastic Determination of compression set Part At ambient or elevated temperatures. ISO/PRF 815-1 - Rubber, vulcanized or thermoplastic -- Determination of compression set -- Part 1: At ambient or elevated temperatures. ISO CT 61 - Plastics.
  • 7. Lee H M, Wu J W, Lei C L. Assessing the lifetime performance index of exponential products with step-stress accelerated life-testing data. IEEE Transactions on Reliability 2013; 62(1): 296-304, http://dx.doi.org/10.1109/TR.2013.2241197.
  • 8. Leong Gan C, Classe F, Hashim U. Superior performance and reliability of copper wire ball bonding in laminate substrate based ball grid array. Microelectronics International 2013; 30(3): 169-175, http://dx.doi.org/10.1108/MI-11-2012-0074.
  • 9. Liu W, He G. Storage life of silicone rubber sealing ring used in solid rocket motor. Chinese Journal of Aeronautics 2014; 27(6): 1469-1476, http://dx.doi.org/10.1016/j.cja.2014.10.013.
  • 10. Lu C J, Meeker W O. Using degradation measures to estimate a time-to-failure distribution. Technometrics 1993; 35(2): 161-174, http:// dx.doi.org/10.2307/1269661.
  • 11. Marioli M, Meneghini M, Rossi F, et al. Degradation mechanisms and lifetime of state-of-the-art green laser diodes. physica status solidi 2015; 212(5): 974-979, http://dx.doi.org/10.1002/pssa.201431714.
  • 12. Meeker W Q, Escobar L A , and Lu C J. Accelerated degradation tests: modeling and analysis. Technometrics 1998; 40(2): p. 89-99, http:// dx.doi.org/ 10.2307/1270643.
  • 13. Naikan V N A, Rathore A. Accelerated temperature and voltage life tests on aluminium electrolytic capacitors: a DOE approach. International Journal of Quality & Reliability Management 2016; 33(1): 120-139, http://dx.doi.org/10.1108/IJQRM-12-2014-0201.
  • 14. Purnell P. Interpretation of climatic temperature variations for accelerated ageing models. Journal of materials science 2004; 39(1): 113-118, http://dx.doi.org/10.1023/B:JMSC.0000007734.71945.93.
  • 15. Si X S, Wang W, Hu C H, et al. Remaining useful life estimation based on a nonlinear diffusion degradation process. IEEE Transactions on Reliability 2012; 61(1): 50-67, http://dx.doi.org/10.1109/TR.2011.2182221.
  • 16. Tajima K, Hotta H, Yamada Y, et al. Accelerated test on electrochromic switchable mirror based on magnesium alloy thin film in simulated environment of various relative humidities. Solar Energy Materials and Solar Cells 2012; 99: 76-83, http://dx.doi.org/10.1016/j. solmat.2011.06.018.
  • 17. Takeda E, Suzuki N. An empirical model for device degradation due to hot-carrier injection. IEEE Electron Device Letters 1983; 4(4): 111113, http://dx.doi.org/10.1109/EDL.1983.25667.
  • 18. akulov N V, Myshlyavtsev А V, Malyutin V I. Estimation of in-use Guaranteed Rubber Lifetime test methods. Procedia Engineering 2015; 113: 479-483, http://dx.doi.org/10.1016/j.proeng.2015.07.339.
  • 19. Van Noortwijk J M, Pandey M D. A stochastic deterioration process for time-dependent reliability analysis. Proceedings of the Eleventh IFIP WG 7.5 Working Conference on Reliability and Optimization of Structural Systems 2004; 259-265.
  • 20. Wang C H, Hsu C H. New nonisothermal Arrhenius temperature integral approximate formula. Environmental Engineering Science 2012; 29(10): 964-971, http://dx.doi.org/10.1089/ees.2011.0292.
  • 21. Wang Z, Shang S, Zhai G, et al. Research on storage degradation testing and life prediction based on ARMA and wavelet transform model for aerospace electromagnetic relay. IEEE 60th Holm Conference on Electrical Contacts (Holm) 2014; 1-8, http://dx.doi.org/10.1109/HOLM.2014.7031021.
  • 22. Xiao K, Gu X, Peng C. Reliability evaluation of the O-type rubber sealing ring for fuse based on constant stress accelerated degradation testing. Journal of Mechanical Engineering 2014; 16: 62-69, http://dx.doi.org/10.3901/JME.2014.16.062.
  • 23. Yang G. Accelerated life tests at higher usage rates. IEEE Transactions on Reliability 2005; 54(1): 53-57, http://dx.doi.org/10.1109/ TR.2004.841730.
  • 24. Yu H F. Designing an accelerated degradation experiment by optimizing the estimation of the percentile. Quality and Reliability Engineering International 2003; 19(3): 197-214, http://dx.doi.org/10.1002/qre.518.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2467d383-40ca-453d-ba47-3ce24828cf94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.