Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Post-industrial sites form a unique phenomenon in the landscape. They enable us to study the human-altered succession of communities. Regarding this, we studied an ant community in three types of habitats – reclamation and spontaneous succession in an ore basin together with unaltered surroundings in the Czech Republic. More than 30 years after being abandoned, the site with spontaneous succession was more species rich than the reclaimed one. Moreover, spontaneous succession created a habitat that was more similar regarding ant diversity to the unaltered surrounding environment than that after traditional reclamation. Ants dependent on tree vegetation were rather rare in both the reclaimed and spontaneous succession parts of the ore basin compared to the surrounding landscape. The relative abundance of socially parasitic ants increases in a gradient from the reclaimed basin, through the basin with spontaneous succession to the unaltered surroundings. Our study highlighted the fact that the formation of ant communities at post-industrial sites is clearly more complicated than for other arthropods, including related aculeate hymenopterans. The potential of both reclaimed and spontaneous succession basins for harbouring endangered species appeared to be lower for ants than for other taxa indicated by recent studies.
Czasopismo
Rocznik
Tom
Strony
139--152
Opis fizyczny
Bibliogr. 85 poz., rys., tab.
Twórcy
autor
- Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
autor
- Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
autor
- Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
autor
- Faculty of Science, University of Hradec Králové, Rokitanského 62, 500 03 Hradec Králové, Czech Republic
Bibliografia
- [1] Andersen A. N., Sparling G. P. 1997 – Ants as Indicators of Restoration Success: Relationship with Soil Microbial Biomass in the Australian Seasonal Tropics – Restor. Ecol. 5: 109-114.
- [2] Beneš J., Kepka P., Konvička M. 2003 – Limestone quarries as refuges for European xerophilous butterflies – Conserv. Biol. 17: 1058-1069.
- [3] Beneš J., Konvička M., Dvořák J., Fric Z., Havelda Z., Pavlíčko A., Vrabec V., Weidenhoffer Z. 2002 – Butterflies of the Czech Republic: Distribution and conservation I-II – Společnost pro ochranu motýlů, Praha, 857 pp.
- [4] Berg-Binder M. C., Suarez A. V. 2012 – Testing the directed dispersal hypothesis: are native ant mounds (Formica sp.) favorable microhabitats for an invasive plant? – Oecologia, 169: 763-772.
- [5] Boots B., Keith A. M., Niechoj R., Breen J., Schmidt O., Clipson N. 2012 – Unique soil microbial assemblages associated with grassland ant species with different nesting and foraging strategies – Pedobiologia, 55: 33-40.
- [6] Buse J., Ranius T., Assmann T. 2008 – An endangered longhorn beetle associated with old oaks and its possible role as an ecosystem engineer – Conserv. Biol. 22: 329-337.
- [7] Cerdà A., Jurgensen M. F. 2008 – The Influence of ants on soil and water losses from an orange orchard in eastern Spain – J. Appl. Entomol. 132: 306-314.
- [8] Cerdà A., Jurgensen M. F. 2011 – Ant mounds as a source of sediment on citrus orchard plantations in eastern Spain: A three-scale rainfall simulation approach – Catena, 85: 231-236.
- [9] Culver D. C., Beattie A. J. 1983 – Effects of Ant Mounds on Soil Chemistry and Vegetation Patterns in a Colorado Montane Meadow – Ecology, 64: 485-492.
- [10] Czechowski W., Vepsäläinen K., Radchenko A. 2013 – Ants on skerries: Lasius assemblages along primary succession – Insectes Soc. 60: 147-153.
- [11] Čermáková Z., Pecharová E., Martiš M. 2011 – Butterflies fauna biodiversity in the post-mining landscape – Górnictwo i Geoinżynieria, 35: 55-61.
- [12] Davidová-Vilímová J. 2004 – Comparison of insect biodiversity after colonization of two different types of industrial deposits (In: Natural Recovery of Human-Made Deposits in Landscape. Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems, Ed: P. Kovář) – Academia, Praha, pp. 324-336.
- [13] Dostál P., Březnová M., Kozlíčková V., Herben T., Kovář P. 2005 – Ant-induced soil modification and its effect on plant below-ground biomass – Pedobiologia, 49: 127-137.
- [14] Dunger W., Wanner M., Hauser H., Hohberg K., Schulz H.-J., Schwalbe T., Seifert B., Vogel J., Voigtländer K., Zimdars B., Zulka K. P. 2001 – Development of soil fauna at mine sites during 46 years after afforestation – Pedobiologia, 45: 243-271.
- [15] Ellwood M. D. F., Manica A., Foster W. A. 2009 – Stochastic and deterministic processes jointly structure tropical arthropod communities – Ecol. Lett. 12: 277-284.
- [16] Englisch T., Steiner F. M., Schlick-Steiner B. C. 2005 – Fine-scale grassland assemblage analysis in Central Europe: ants tell another story than plants (Hymenoptera: Formicidae; Spermatophyta) – Myrmecol. Nachr. 7: 61-67.
- [17] Fagundes R., Anjos D. V., Carvalho R., Del-Claro K. 2015 – Availability of Food and Nesting-sites as Regulatory Mechanisms for the Recovery of Ant Diversity After Fire Disturbance – Sociobiology, 62: 1-9.
- [18] Finér L., Jurgensen M. F., Domisch T., Kilpeläinen J., Neuvonen S., Punttila P., Risch A. C., Ohashi M., Niemelä P. 2013 – The Role of Wood Ants (Formica rufa group) in Carbon and Nutrient Dynamics of a Boreal Norway Spruce Forest Ecosystem – Ecosystems, 16: 196-208.
- [19] Folgarait P. J. 1998 – Ant biodiversity and its relationship to ecosystem functioning: a review– Biodivers. Conserv. 7: 1221-1244.
- [20] Frouz J., Jilková V. 2008 – The effect of ants on soil properties and processes (Hymenoptera: Formicidae) – Myrmecol. News 11: 191-199.
- [21] Gallé L. 1975 – Factors stabilizing the ant populations (Hymenoptera: Formicidae) in the grass associations of the Tisza basin – Tiscia, 10: 61-66.
- [22] Gallé L. 1991 – Structure and succession of ant assemblages in a north European sand dune area – Holarct. Ecol. 14: 31-37.
- [23] Gallé R., Torma A., Maák I. 2016 – The effect of forest age and habitat structure on the ground-dwelling ant assemblages of lowland poplar plantations – Agric. For. Entomol. 18: 151-156.
- [24] Gorb S. N., Gorb E. V. 1999 – Effects of ant species composition on seed removal in deciduous forest in eastern Europe – Oikos, 84: 110-118.
- [25] Gosper C. R., Pettit M. J., Andersen A. N., Yates C. J., Prober S. M. 2015 – Multicentury dynamics of ant communities following fire in Mediterranean-climate woodlands: Are changes congruent with vegetation succession? – For. Ecol. Manage. 342: 30-38.
- [26] Gotelli N. J., Ellison A. M., Dunn R. R., Sanders N. J. 2011 – Counting ants (Hymenoptera: Formicidae): Biodiversity sampling and statistical analysis for myrmecologists – Myrmecol. News, 15: 13-19.
- [27] Hilszczański J., Jaworski T., Plewa R., Horák J. 2016 – Tree species and position matter: the role of pests for survival of other insects – Agric. For. Entomol. 18: 340-348.
- [28] Hirzel A., Guisan A. 2002 – Which is the optimal sampling strategy for habitat suitability modelling – Ecol. Model. 157: 331-341.
- [29] Holec M., Frouz J. 2005 – Ant (Hymenoptera: Formicidae) communities in reclaimed and unreclaimed brown coal mining spoil dumps in the Czech Republic – Pedobiologia, 49: 345-357.
- [30] Hölldobler B., Wilson E. O. 1990 – The Ants – Springer-Verlag, Berlin, 732 pp.
- [31] Horak J., Safarova L. 2015 – Effect of reintroduced manual mowing on biodiversity in abandoned fen meadows – Biologia, 70: 113-120.
- [32] Hurlbert S. H. 1984 – Pseudoreplication and the design of ecological field experiments – Ecol. Monogr. 54: 187-211.
- [33] Huusela-Veistola E., Vasarainen A. 2000 – Plant succession in perennial grass strips and effects on the diversity of leafhoppers (Homoptera, Auchenorrhyncha) – Agric. Ecosyst. Environ. 80: 101-112.
- [34] Jarešová I., Kovář P. 2004 – Interactions between ants and plants during vegetation succession in the abandoned ore-washery sedimentation basin in Chvaletice (In: Natural Recovery of Human-Made Deposits in Landscape. Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems, Ed: P. Kovář) – Academia, Praha, pp. 300-310.
- [35] Jílková V., Pech P., Mihaljevič M., Frouz J. 2017 – Effects of the ants Formica sanguinea, Lasius niger, and Tetramorium cf. caespitum on soil properties in an ore-washery sedimentation basin – J. Soils Sediments, 17: 2127-2135.
- [36] Katayama N., Suzuki N. 2005 – The importance of the encounter rate between ants and herbivores and of ant aggressiveness against herbivores in herbivore exclusion by ants on Vicia angustifolia L. (Leguminosae) with extrafloral nectaries – Appl. Entomol. Zool. 40: 69-76.
- [37] Kędzior R., Skalski T., Szwalec A., Mundała P. 2014 – Diversity of carabid beetle assemblages (Coleoptera: Carabidae) in a postindustrial slag deposition area – Baltic J. Coleopterol. 14: 219-228.
- [38] Kilpeläinen J., Finér L., Niemelä P., Domisch T., Neuvonen S., Ohashi M., Risch A. C., Sundström L. 2007 – Carbon, nitrogen and phosphorus dynamics of ant mounds (Formica rufa group) in managed boreal forests of different successional stages – Appl. Soil Ecol. 36: 156-163.
- [39] Klimes P., Idigel C., Rimandai M., Fayle T. M., Janda M., Weiblen G. D., Novotny V. 2012 – Why are there more arboreal ant species in primary than in secondary tropical forests? – J. Anim. Ecol. 81: 1103-1112.
- [40] Kovář P. 2004 – Natural Recovery of Human-Made Deposits in Landscape (Biotic Interactions and Ore/Ash-Slag Artificial Ecosystems, Ed: P. Kovář) – Academia, Praha, 358 pp.
- [41] Kovář P., Kovářová M., Dostál P., Herben T. 2001 – Vegetation of ant-hills in a mountain grassland: effects of mound history and of dominant ant species – Plant Ecol. 156:215-227.
- [42] Kovář P., Vojtíšek P., Zentsová I. 2013 – Ants as Ecosystem Engineers in Natural Restoration of Human Made Habitats – J. Landsc. Ecol. 6: 18-31.
- [43] Krauss J., Alfert T., Steffan-Dewenter I. 2009 – Habitat area but not habitat age determines wild bee richness in limestone quarries – J. Appl. Ecol. 46: 194-202.
- [44] Krzysztofiak L. 1991 – The effect of habitat pollution with heavy metals on ant populations and ant-hill soil – Ekol. Pol. 39: 181-202.
- [45] Lill J. T., Marquis R. J. 2003 – Ecosystem engineering by caterpillars increases insect herbivore diversity on white oak – Ecology, 84: 682-690.
- [46] Majer J. D., Nichols O. G. 1998 – Long-term recolonization patterns of ants in Western Australian rehabilitated bauxite mines with reference to their use as indicators of restoration success – J. Appl. Ecol. 35: 161-182.
- [47] Marini L., Fontana P., Battisti A., Gaston K. J. 2009 – Agricultural management, vegetation traits and landscape drive orthopteran and butterfly diversity in a grassland-forest mosaic: a multi-scale approach – Insect Conserv. Divers. 2: 213-220.
- [48] Markó B., Czechowski W. 2004 – Lasius psammophilus Seifert and Formica cinerea Mayr (Hymenoptera: Formicidae) on sand dunes: conflicts and coexistence – Ann. Zool. 54: 365-378.
- [49] Mekonnen M., Keesstra S. D., Baartman J. E., Ritsema C. J., Melesse A. M. 2015 – Evaluating Sediment Storage Dams: Structural Off-Site Sediment Trapping Measures in Northwest Ethiopia – Cuadernos de Investigación Geográfica, 41:7-22.
- [50] Meyer S. T., Neubauer M., Sayer E. J., Leal I. R., Tabarelli M., Wirth R. 2013 – Leaf-cutting ants as ecosystem engineers: topsoil and litter perturbations around Atta cephalotes nests reduce nutrient availability – Ecol. Entomol. 38: 497-504.
- [51] Milner A. M., Robertson A. L., Monaghan K. A., Veal A. J., Flory E. A. 2008 – Colonization and development of an Alaskan stream community over 28 years – Fron. Ecol. Environ. 6: 413-419.
- [52] Oksanen L. 2001 – Logic of experiments in ecology: is pseudoreplication a pseudoissue? – Oikos, 94: 27-38.
- [53] Ottonetti L., Tucci L., Santini G. 2006 – Recolonization Patterns of Ants in a Rehabilitated Lignite Mine in Central Italy: Potential for the Use of Mediterranean Ants as Indicators of Restoration Processes – Restor. Ecol. 14: 60-66.
- [54] Pech P. 2013 – Myrmica curvithorax (Hymenoptera: Formicidae) in the Czech Republic: a contribution to the knowledge of its distribution and biology – Klapalekiana, 49: 197-204.
- [55] Pech P., Dvořáčková M. 2015 – Faunistic records from the Czech Republic - 382. Hymenoptera: Formicidae – Klapalekiana, 51: 168.
- [56] Pech P., Fric Z. F. 2013 – Malacofauna on coal - ash settling basins comparison of a functional basin to a basin abandoned for 26 years – Environ. Prot. Eng. 39: 73-85.
- [57] Pętal J. 1980 – Ant populations, their regulation and effect on soil in meadows – Ekol. Pol. 28: 297-326.
- [58] Prach K., Pyšek P. 2001 – Using spontaneous succession for restoration of human-disturbed habitats: experience from Central Europe – Ecol. Eng. 17: 55-62.
- [59] Prausová R., Štefánek M., Rauch O., Kovář P. 2017 – Trees as ecosystem engineers driving vegetational restoration/retrogradation of industrial deposits in cultural landscape – J. Landsc. Ecol. 10: 122-131.
- [60] Radchenko A., Stankiewicz A., Sielezniew M. 2004 – First record of Myrmica salina Ruzsky (Hymenoptera: Formicidae) for Poland – Fragm. Faun. 47: 55-58.
- [61] Rebele F. 2000 – Competition and coexistence of rhizomatous perennial plants along a nutrient gradient – Plant Ecol. 147: 77-94.
- [62] Ribas C. R., Schmidt F. A., Solar R. R. C., Campos R. B. F., Valentim C. L., Schoereder J. H. 2011 – Ants as indicators of the success of rehabilitation efforts in deposits of gold mining tailings – Restor. Ecol. 20: 712-720.
- [63] Rich K. J., Ridealgh M., West S. E., Cinderby S., Ashmore M. 2015 – Exploring the Links between Post-Industrial Landscape History and Ecology through Participatory Methods – PLoS One 10.
- [64] Rodrigo-Comino J., Seeger M., Senciales J. M., Ruiz-Sinoga J. D., Ries J. B. 2016 – Spatial and temporal variation of soil hydrological processes on steep slope vineyards (Ruwel-Mosel Valley, Gemany) – Cuadernos de Investigación Geográfica, 42: 281-306.
- [65] Řezáč M. 2004 – Spiders and harvestmen (Arachnida: Araneae, Opiliones) on an abandoned ore-washery sedimentation basin near Chvaletice (In: Natural Recovery of Human-Made Deposits in Landscape. Biotic Interactions and Ore/AshSlag Artificial Ecosystems, Ed: P. Kovář) – Academia, Praha, pp. 311-323.
- [66] Sanders D., van Veen F. J. F. 2011 – Ecosystem engineering and predation: The multitrophic impact of two ant species – J. Anim. Ecol. 80: 569-576.
- [67] Schlick-Steiner B. C., Steiner F. M., Moder K., Bruckner A., Fiedler K., Christian E. 2006 – Assessing ant assemblages: Pitfall trapping versus nest counting (Hymenoptera, Formicidae) – Insectes Soc. 53: 274-281.
- [68] Sedláková I., Fiala K. 2001 – Ecological problems of degradation of alluvial meadows due to expanding Calamagrostis epigejos – Ekológia (Bratislava), 20 (Suppl. 3): 226-233.
- [69] Seifert B. 1988a – A revision of the European species of the ant subgenus Chthonolasius (Insecta, Hymenoptera, Formicidae) – Ent. Abh. Mus. Tierk. Dresden 51: 143-180.
- [70] Seifert B. 1988b – A taxonomic revision of the Myrmica species of Europe, Asia Minor, and Caucasia (Hymenoptera, Formicidae) – Abh. Ber. Naturkundemus. Görlitz 62: 1-75.
- [71] Seifert B. 2002 – The „type” of Myrmica bessarabica Nassonov 1889 and the identity of Myrmica salina Ruzsky 1905 (Hymenoptera: Formicidae, Myrmicinae) – Mitt. Münch. Ent. Ges. 92: 93-100.
- [72] Seifert B. 2007 – Die Ameisen Mittel- und Nordeuropas – Lutra Verlags- und Vertriebsgesellschaft, Tauer, 368 pp.
- [73] Seifert B. 2017 – The ecology of Central European non-arboreal ants – 37 years of a broad-spectrum analysis under permanent taxonomic control – Soil Org. 89: 1-67 (Digital supplementary material).
- [74] Steffan-Dewenter I., Tscharntke T. 1997 – Early succession of butterfly and plant communities on set-aside fields – Oecologia, 109: 294-302.
- [75] Steiner F. M., Schlick-Steiner B. C., Moder K. 2006 – Morphology-based cyber identification engine to identify ants of the Tetramorium caespitum/impurum complex (Hymenoptera: Formicidae) – Myrmecol. Nachr. 8: 175-180.
- [76] Stejskal J., Horák J., Typta J. 2016 – Effect of hybridization in the firs: artificial hybridization may lead to higher survival rate – Eur. J. For. Res. 135: 1097-1105.
- [77] Šálek M. 2012 – Spontaneous succession on opencast mining sites: implications for bird biodiversity – J. Appl. Ecol. 49:1417-1425.
- [78] Tropek R., Cerna I., Straka J., Cizek O., Konvicka M. 2013a – Is coal combustion the last chance for vanishing insects of inland drift sand dunes in Europe? – Biol. Conserv. 162: 60-64.
- [79] Tropek R., Cerna I., Straka J., Kocarek P., Malenovsky I., Tichanek F., Sebek P. 2016 – In search for a compromise between biodiversity conservation and human health protection in restoration of fly ash deposits: effect of anti-dust treatments on five groups of arthropods – Environ. Sci. Pollut. Res. 23: 13653-13660.
- [80] Tropek R., Hejda M., Kadlec T., Spitzer L. 2013b – Local and landscape factors affecting communities of plants and diurnal Lepidoptera in black coal spoil heaps: Implications for restoration management – Ecol. Eng. 57: 252-260.
- [81] Tropek R., Kadlec T., Hejda M., Kocarek P., Skuhrovec J., Malenovsky I., Vodka S., Spitzer L., Banar P., Konvicka M. 2012 – Technical reclamations are wasting the conservation potential of post-mining sites. A case study of black coal spoil dumps – Ecol. Eng. 43: 13-18.
- [82] Tropek R., Konvicka M. 2008 – Can quarries supplement rare xeric habitats in a piedmont region? Spiders of the Blansky les Mts, Czech Republic – Land Degrad. Dev. 19: 104-114.
- [83] Yan D. M., Zhao F. Y., Sun O.J. 2013 – Assessment of vegetation establishment on tailings dam at an iron ore mining site of suburban Beijing, China, 7 years after reclamation with contrasting site treatment methods – Environ. Manage. 52: 748-757.
- [84] Vicente-Serrano S. M. 2016 – Foreword: Drought Complexity and Assessment Under Climate Change Conditions – Cuadernos de Investigación Geográfica, 42: 7-11.
- [85] Vojar J., Doležalová J., Solský M., Smolová D., Kopecký O., Kadlec T., Knapp M. 2016 – Spontaneous succession on spoil banks supports amphibian diversity and abundance – Ecol. Eng. 90: 278-284.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-245f2c0b-0543-466c-a187-9069c2f9c90e