PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Two types of miniaturized dual band implantable antennas are designed and presented, one of a meander type and the other is the so called comb antenna. In medical applications the electromagnetic characteristic changes of tissue in different situations and the corresponding resonant frequency shifts, should not disturb the data transmission. The objective is to design dual band antennas in 400 MHz and 2.4 GHz with suitable bandwidths and small sizes. The meander type antenna was fabricated and its S parameters were measured using an equivalent liquid phantom of skin, fat and muscle which included propanol, butanol, purified water and salt. The experimental results are shown and compared.
Twórcy
autor
  • Center of Excellence on Applied Electromagnetic Systems, School of ECE, College of Engineering, University of Tehran, North Kargar st., P.O. Box 14395-515, Tehran, Iran
  • Center of Excellence on Applied Electromagnetic Systems, School of ECE, College of Engineering, University of Tehran, Iran
Bibliografia
  • [1] Kim J, Samii YR. Implanted antennas inside a human body: simulations, designs, and characterizations. IEEE Trans Microw Theory Tech 2004;52(August (8)):1934–43.
  • [2] Murphy OH, McLeod CN, Navaratnarajah M, Yacoub M, Toumazou C. A pseudo-normal-mode helical antenna for use with deeply implanted wireless sensors. IEEE Trans Antennas Propag 2012;60(February (2)):1135–9.
  • [3] Xia W, Saito K, Takahashi M, Ito K. Performances of an implanted cavity slot antenna embedded in the human arm. IEEE Trans Microw Theory Tech 2009;57(April (4)):894–9.
  • [4] Mason PA, Murphy MR, Petersen RC. IEEE EMF Health Safety Standards. IEEE SCC-28 Standards; 2016.
  • [5] Merli F, Bolomey L, Meurville E, Skrivervik AK. Implanted antenna for biomedical applications. IEEE Conferences, Antennas and Propagation Society International Symposium, AP-S. 2008;1–4.
  • [6] Kiourti A, Nikita KS. Miniature scalp-implantable antennas for telemetry in the MICS and ISM bands: design, safety considerations and link budget analysis. IEEE Trans Antennas Propag 2012;60(February):3568–75.
  • [7] Kiourti A, Christopoulou M, Nikita KS. Performance of a novel miniature antenna implanted in the human head for wireless biotelemetry. Proc IEEE Int Symp Antennas Propag 2011;392–5.
  • [8] Huang FJ, Lee CM, Chang CL, Chen LK, Yo TC, Luo CH. Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans Antennas Propag 2011;59(July (7)).
  • [9] Palandoken M. Compact bioimplantable MICS and ISM band antenna design for wireless biotelemetry applications. Radioengineering 2017;26(4).
  • [10] Palandöken M. INTECH Open Access Publisher. Artificial materials based microstrip antenna design; 2011.
  • [11] Hashemi S, Rashed-Mohassel J. Miniaturization of dual band implantable antennas. Microw Opt Technol Lett 2017;59(1):36–40.
  • [12] Gabriel S. The dielectric properties of biological tissues. Phys Med Biol 1996;41:2271–93.
  • [13] Gabriel S, Lau RW, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol 1996;41(11):2251.
  • [14] Augustine R. Electromagnetic modeling of human tissues and its application on the interaction between antenna and human body in the BAN context [Ph.D. thesis]. Paris-Est University; 2009.
  • [15] Volakis JL, Chen CC. Small antennas miniaturization techniques and applications. McGraw Hill; 2010 [chapter 3].
  • [16] Kraus JD, Marhefka RJ. Antennas for all applications. 3rd ed. 2018.
  • [17] Hansen RC. Electrically small, superdirective, and superconducting antennas. John Wiley & Sons, Inc.; 2006.
  • [18] Rashed J, Tai CT. A new class of resonant antennas. IEEE Trans Antennas Propag 1991;39(September (7)):1428–30.
  • [19] Kiourti A, Psathas KA, Costa JR, Fernandes CA, Nikita KS. Dual-band implantable antennas for medical telemetry: a fast design methodology and validation for intra-cranial pressure monitoring. Prog Electromagn Res 2013;141 (July):161–83.
  • [20] Merli F, Bolomey L, Zürcher JF, Corradini G, Meurville E, Skrivervik AK. Design, realization and measurements of a miniature antenna for implantable wireless communication systems. IEEE Trans Antennas Propag 2011;59(October (10)):3544–55.
  • [21] Abdelrahman E. M, Sharawi MS, Muqaibel A. Implanted dual-band circular antenna for biomedical applications. Microw Opt Technol Lett 2018;60(5):1125–32.
  • [22] Johansson AJ. Wireless communication with medical implants: antennas and propagation; 2004.
  • [23] Lazebnik M, Madsen EL, Frank GR, Hagness SC. Tissuemimicking phantom materials for narrowband and ultra wideband microwave applications. Phys Med Biol 2005;50:4245–58.
  • [24] Porter E, Fakhoury J, Oprisor R, Coates M, Popović M. Improved tissue phantoms for experimental validation of microwave breast cancer detection. European Conference on Antennas and Propagation; 2010.
  • [25] Venkatesh MS, Raghavan GSV. An overview of dielectric properties measuring techniques. Can Biosyst Eng 2005;47.
  • [26] Berube D, Ghannouchi FM, Savard P. A comparative study of four open-ended coaxial probe models for permittivity measurements of lossy dielectric/biological materials at microwave frequencies. Trans Microw Theory Tech 1996;44 (October (10)):1928–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-245e91fe-eecf-4a58-a1e1-a71e2ea13110
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.