Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Formalizm termodynamiczny i jego zastosowanie w teorii układów dynamicznych stworzył m.in. Yakov Sinai, Rufus Bowen i David Ruelle.
Wydawca
Czasopismo
Rocznik
Tom
Strony
23--53
Opis fizyczny
Bibliogr. 82 poz., rys., wykr.
Twórcy
Bibliografia
- [1] K. Barański, B. Karpińska, A. Zdunik, Hyperbolic dimension of Julia sets of meromorphic maps with logarithmic tracts, Int. Math. Res. Not. 4, nr 2009, 615-624.
- [2] K. Barański, B. Karpińska, A. Zdunik, Bowens formuła for meromorphic functions, Ergod. Th. & Dynam. Sys. 32 (2012), nr 4, 1165-1189.
- [3] R. Bowen, Equlibrium states and the ergodic theory of Anosov diffeomorphisms, Lect. Notes in Math., t. 470, Springer-Verlag 1975.
- [4] I. Binder, N. Makarov, S. Smirnov, Harmonic measure and polynomial Julia sets, Duke Math. J. 117 (2003), nr 2, 343-365.
- [5] H. Bruin, J. Rivera-Letelier, W. Shen, S. van Strien, Large derivatives, backward contraction and invariant densities for interval maps, Invent. Math. 172 (2008), nr 3, 509-533.
- [6] H. Bruin, M. Todd, equilibrium states for interval maps: the potential -t log\Df\, Ann. Scient. Éc. Norm. Sup. 4 serié 42 (2009), 559-600.
- [7] H. Bruin, M. Todd, Equilibrium states for interval maps: potentials with sup ɸ - inf ɸ < h┬(f), Comm. Math. Phys. 283 (2008), nr 3, 579-611 (Errata: Comm. Math. Phys. 304 (2011), nr 2, 583-584).
- [8] D. Coronel, J. Rivera-Letelier, Low-temperature phase transitions in the quadratic family, ukaże się w Adv. Math., dostępne pod adresem arXiv:1205.1833.
- [9] D. Coronel, J. Rivera-Letelier, High-order phase transitions in the quadratic family, dostępne pod adresem arXiv:1305.4971.
- [10] W. de Melo, S. van Strien, One-dimensional Dynamics, Springer-Verlag, Berlin and New York 1994.
- [11] M. Denker, E Przytycki, M. Urbański, On the transfer operator for rational functions on the Riemann sphere, Ergod. Th. & Dynam. Sys. 16 (1996), 255-266.
- [12] M. Denker, M. Urbański, Ergodic theory of equilibrium states for rational maps, Nonlinearity 4 (1991), nr 1, 103-134.
- [13] N. Dobbs, M. Todd, Free entropy jumps up, dostępne pod adresem arXiv:1512. 09245.
- [14] J. B. Garnett, D. E. Marshall, Harmonic Measure, New Mathematical Monographs 2, Cambridge University Press, Cambridge 2005.
- [15] K. Gelfert, E Przytycki, M. Rams, On the Lyapunov spectrum for rational maps, Math. Annalen 348 (2010), 965-1004.
- [16] K. Gelfert, F. Przytycki, M. Rams, Lyapunov spectrum for multimodal maps, Ergod. Th. & Dynam. Sys. 36 (2016), 1441-1493.
- [17] J. Graczyk, S. Smirnov, Collet, Eckmann and Hölder, Invent. Math. 133 (1998), 69-96.
- [18] J. Graczyk, S. Smirnov, Non-uniform hyperbolicity in complex dynamics, Invent. Math. 175 (2009), 335-415.
- [19] P. Haissinsky, K. M. Pilgrim, Coarse Expanding Conformal Dynamics, t. 325, Asterisque 2009.
- [20] H. Hedenmalm, I. Kayumov, On the Makarov Law ofthe Iterated Logarithm, Proc. Amer. Math. Soc. 135 (2007), nr 7, 2235-2248.
- [21] J. Heinonen, P. Koskela, Definitions of quasiconformality, Invent. Math. 120 (1995), 61-79.
- [22] F. Hofbauer, G. Keller, Equilibrium states and Hausdorff measures for interval maps, Math. Nachr. 164 (1993), 239-257.
- [23] F. Hofbauer, M. Urbański, Fractal properties of invariant subsets for piecewise monotonic maps on the interval, Trans. Amer. Math. Soc. 343 (1994), 659-673.
- [24] I. Inoquio-Renteria, J. Rivera-Letelier, A characterization of hyperbolic potentials of rational maps, Buli. Braz. Math. Soc. (N.S.) 43 (2012), nr 1, 99-127.
- [25] G. Iommi, M. Todd, Natural equilibrium states for multimodal maps, Communications in Math. Phys. 300 (2010), 65-94.
- [26] O. Ivrii, On Makarov's principle in conformal mapping, ukaże się w Int. Math. Res. Not., dostępne pod adresem arXiv:1604.05619.
- [27] M. V. Jakobson, Markov partitions for rational endomorphisms of the Riemann sphere, [w:] Mnogokomponentnyje slucajnyje sistemy, Izd. Nauka, Moscow 1978, 303-319.
- [28] G. Levin, F. Przytycki, W. Shen, The Lyapunov exponent of holomorphic maps, Invent. Math. 205 (2016), 363-382.
- [29] H. Li, J. Rivera-Letelier, Equilibrium states of interval maps for hyperbolic potentials, Nonlinearity 27 (2014), nr 8, 1779-1804.
- [30] H. Li, J. Rivera-Letelier, Equilibrium states of weakly hyperbolic one-dimensional maps for Hölder potentials, Comm. Math. Phys. 328 (2014), nr 1, 397-419.
- [31] M. Lyubich, Analytic low-dimensional dynamics: from dimension one to two, [w:] Proc. ICM, t. 1, Seul 2014, 443-474.
- [32] N. G. Makarov, On the distortion of boundary sets under conformal mappings, Proc. London Math. Soc. 3d ser. 51 (1985), 369-384.
- [33] N. Makarov, S. Smirnov, On thermodynamics of rational maps. II. Non-recurrent maps, J. London Math. Soc. (2) 67 (2003), nr 2, 417-432.
- [34] A. Manning, The dimension of the maximal measure for a polynomial map, Ann. of Math. 119 (1984), 425-430.
- [35] V. Mayer, M. Urbański, Thermodynamic formalism and integral means spectrum of asymptotic tracts for transcendental entire functions, dostępne pod adresem arXiv:1709.05166v3.
- [36] D. Mauldin, M. Urbański, Graph Directed Markov Systems: Geometry and Dynamics of Limit Sets, Cambridge University Press, Cambridge 2003.
- [37] C. T. McMullen, Thermodynamics, dimension and the Weil-Petersson metric, Invent. Math. 173 (2008), 365-428.
- [38] J. Milnor, On Lattes maps, [w:] Dynamics on the Riemann sphere (R G. Hjorth, C. L. Petersen, red.), European Mathematical Society Publishing House, Zürich 2006, 9-43.
- [39] M. Misiurewicz, W. Szlenk, Entropy of piecewise monotone mappings, Studia Math. 67 (1980), 45-63.
- [40] V. Nekrashevych, Iterated monodromy groups, [w:] Groups St Andrews 2009 in Bath, Vol. 1, Lecture Note Series, t. 387, Cambridge University Press 2011, 41-93.
- [41] T. Nowicki, E Przytycki, Topological invariance of the Collet-Eckmann property for S-unimodal maps, Fund. Math. 155 (1998), 33-43.
- [42] T. Nowicki, D. Sands, Non-uniform hyperbolicity and universal bounds for S-unimodal maps, Invent. Math. 132 (1998), 633-680.
- [43] Y. Pesin, On the work of Sarig on countable Markov chains and thermodynamic formalism, J. Mod. Dyn. 8 (2014), nr 1, 1-14.
- [44] Y. Pesin, S. Senti, Equilibrium measures for maps with inducing schemes, Journal of Modern Dynamics 2 (2008), nr 3, 397-430.
- [45] E Przytycki, Hausdorff dimension of harmonie measure on the boundary of an attractive basin for a holomorphic map, lnvent. Math. 80 (1985), 161-179.
- [46] E Przytycki, Riemann map and holomorphic dynamics, Invent. Math. 85 (1986), 439-455.
- [47] F. Przytycki, On the law of iterated logarithm for Bloch functions, Studia Math. 93 (1988), nr 2, 145-154.
- [48] F. Przytycki, On the Perron-Frobenius-Ruelle operator for rational maps on the Riemann sphere and for Hölder continuous functions, Bull. Braz. Math. Soc. 20 (1989), nr 2, 95-125.
- [49] F. Przytycki, Lyapunov characteristic exponents are nonnegative, Proc. Amer. Math. Soc. 119 (1993), 309-317.
- [50] F. Przytycki, Accessibility of typical points for invariant measures of positive Lyapunov exponents for iterations of holomorphic maps, Fund. Math. 144 (1994), 259-278.
- [51] F. Przytycki, Iteration of holomorphic Collet-Eckmann maps: Conformal and invariant measures. Appendix: On non-renormalizable quadratic polynomials, Trans. Amer. Math. Soc. 350 (1998), 717-742.
- [52] F. Przytycki, Conical limit set and Poincaré exponent for iterations of rational functions, Trans. Amer. Math. Soc. 351 (1999), 2081-2099.
- [53] F. Przytycki, Hölder implies Collet-Eckmann., [w:] Geometrie complexe et systèmes dynamiques, Astérisque 2000, 385-403.
- [54] F. Przytycki, Expanding repellers in limit sets for iterations of holomorphic functions, Fund. Math. 186 (2005), nr 1, 85-96.
- [55] F. Przytycki, On the hyperbolic Hausdorff dimension of the boundary of a basin of attraction for a holomorphic map and of quasirepellers, Bull. Pol. Acad. Sci. Math. 54 (2006), nr 1, 41-52.
- [56] F. Przytycki, Geometric pressure in real and complex l-dimensional dynamics via trees of pre-images and via spanning sets, Monatshefte für Math., praca przyjęta do druku.
- [57] F. Przytycki, J. Rivera-Letelier, Nice inducing schemes and the thermodynamics of rational maps, Communications in Math. Phys. 301 (2011), nr 3, 661-707.
- [58] F. Przytycki, J. Rivera-Letelier, Geometric pressure for multimodal maps of the interval, Memoirs of the Amer. Math. Soc., praca przyjęta do druku.
- [59] F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equivalence and topological invariance of conditions for non-uniform hyperbolicity in the iteration of rational maps, Invent. Math. 151 (2003), 29-63.
- [60] F. Przytycki, J. Rivera-Letelier, S. Smirnov, Equality of pressures for rational functions, Ergod. Th. & Dynam. Sys. 24 (2004), 891-914.
- [61] F. Przytycki, S. Rohde, Porosity of Collet-Eckmann Julia sets, Fund. Math. 155 (1998), 189-199.
- [62] F. Przytycki, S. Rohde, Rigidity of holomorphic Collet-Eckmann repellers, Arkiv för Mat. 37 (1999), nr 2, 357-371.
- [63] F. Przytycki, J. Skrzypczak, Convergence and pre-images of limit points for coding trees for iterations of holomorphic maps, Math. Annalen 290 (1991), 425-440.
- [64] F. Przytycki, M. Urbański, Conformal Fractals: Ergodic Theory Methods, London Mathematical Society Lecture Note, t. 371, Cambridge University Press, Cambridge 2010.
- [65] F. Przytycki, M. Urbański, A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, I, Annals of Math. 130 (1989), 1-40.
- [66] F. Przytycki, M. Urbański, A. Zdunik, Harmonic, Gibbs and Hausdorff measures for holomorphic maps, II, Studia Math. 97 (1991), nr 3, 189-225.
- [67] F. Przytycki, A. Zdunik, Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps, geometric coding trees technique. Fund. Math. 145 (1994), 65-77.
- [68] J. Rivera-Letelier, Asymptotic expansion of smooth interval maps, dostępne pod adresem arXiv:1204.3071v2.
- [69] J. Rivera-Letelier, W. Shen, Statistical properties of one-dimensional maps under weak hyperbolicity assumptions, Ann. Sci. de l’ENS 47 (2014), nr 6, 1027-1083.
- [70] D. Ruelle, Thermodynamic Formalism, [w:[ Encyclopedia of Mathematics and Its Applications, t. 5, Addison-Wesley Publ. Co., London 1978.
- [71] W. Shen, S. van Strien, Recent developments in interval dynamics, [w:] Proceedings ICM Seoul 2014, Vol III 2014, 699-719.
- [72] Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, Akadémiai Kiadó, Budapest 1982.
- [73] Ya. G. Sinai, Gibbs measures in ergodic theory, Uspehi Mat. Nauk 27 (1972), nr 4 (166), 21-64 (po rosyjsku, tłumaczenie angielskie w Russian Mathematical Surveys 27 (1972), nr 4, 21-69).
- [74] B. O. Stratmann, M. Urbański, Real analyticity of topological pressure for indifferentally semihyperbolic generalized polynomial-like maps, Indag. Math. 14 (2003), nr 1, 119-134.
- [75] D. Sullivan, Seminar on Conformal and hyperbolic Geometry, Notes by M. Baker and J. Seade, Preprint IHES (1982).
- [76] W. Szlenk, Wstęp do teorii gładkich układów dynamicznych, Bibilioteka Matematyczna, t. 56, PWN, Warszawa 1982.
- [77] M. Szostakiewicz, M. Urbański, A. Zdunik, Stochastics and thermodynamics for equilibrium measures of holomorphic endomorphisms on complex projective spaces, Monatsh. Math. 174 (2014), nr 1, 141-162.
- [78] M. Szostakiewicz, M. Urbański, A. Zdunik, Fine inducing and equilibrium measures for rational functions of the Riemann sphere, Israel J. Math. 210 (2015), nr 1, 399-465.
- [79] P. Walters, An Introduction to Ergodic Theory, Springer-Verlag, Berlin and New York 1982.
- [80] V. S. Varadarajan, Groups of automorphisms of Borel spaces, Trans. AMS 109 (1963), 191-220.
- [81] A. Zdunik, Parabolic orbifolds and the dimension of the maximal measure for rational maps, Invent. Math. 99 (1990), 627-649.
- [82] A. Zdunik, Harmonic measure versus Hausdorff measures on repellers for holomorphic maps, Trans. AMS 326 (1991), nr 2, 633-652.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-245bfc42-a1b3-4f55-8a56-4524a76da031