Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Wpływ wybranych czynników na eliminację zanieczyszczeń organicznych w modelowym reaktorze ze złożem ruchomym
Języki publikacji
Abstrakty
The aim of the study was to determine the impact of selected factors on the reduction of organic pollutants, expressed in BOD5 and CODCr, in wastewater treated in a laboratory scale model of moving bed biofi lm reactor (MBBR). The factors included in the experiment: the degree of fi lling the fluidized bed with biomass carriers, hydraulic load, and aeration intensity. The tested model of the bioreactor consisted of five independent chambers with diameter D = 0.14 m and height H = 2.0 m, which were fi lled with biomass carriers at 0%, 20%, 40%, 60%, 70% of their active volume. During the test period, hydraulic loads at the level of Qh1 = 0.073 m3·m-2·h-1 and Qh2 = 0.073 m3·m-2·h-1were applied, which ensured one-day and two-day sewage retention, respectively. The said reactors were subjected to constant aeration at P1 = 3.0 dm3·min-1 and P2 = 5.0 dm3·min-1. The highest efficiency of the reduction of the analysed indicators was demonstrated by reactors filled with carriers in the degree of 40–60%. Based on the statistical analyses (the analyses of the ANOVA variations and the Kruskal-Wallis test) carried out, it was found that the studied factors significantly modified the mutual interaction in the process of reducing BOD5 in treated wastewater of the reactors tested. The significance of the impact of the discussed factors on the values of the studied indicators in treated wastewater depends on mutual interactions between the investigated factors.
Celem badań było określenie wpływu wybranych czynników na zmniejszenie zanieczyszczeń organicznych, wyrażonych wskaźnikami BZT5 i ChZTCr, w ściekach oczyszczanych w modelu reaktora przypływowego ze złożem ruchomym typu MBBR. Czynniki, które uwzględniono w eksperymencie to: stopień wypełnienia złoża nośnikami biomasy, obciążenie hydrauliczne oraz intensywność napowietrzania. Badany model bioreaktora stanowił pięć niezależnych komór o średnicy D = 0,14 m i wysokości H = 2,0 m, które były wypełnione nośnikami biomasy w stopniu: 0%, 20%, 40%, 60%, 70% ich objętości czynnej. W okresie badań zastosowano obciążenia hydrauliczne na poziomie Qh1 = 0,073 m3·m-2·h-1 oraz Qh2 = 0,073 m3·m-2·h-1, co zapewniało odpowiednio jednodobowe oraz dwudobowe zatrzymanie ścieków. Przedmiotowe reaktory poddawane były stałemu napowietrzaniu na poziomie P1 = 3,0 dm,3min-1 oraz P1 = 3,0 dm3min-1 = 5,0 dm3·min-1. Największą skuteczność redukcji analizowanych wskaźników wykazywały reaktory wypełnione kształtkami w stopniu 40–60%. Na podstawie przeprowadzonych analiz statystycznych (analiza wariacji ANOVA oraz test Kruskala-Wallisa) stwierdzono, iż badane czynniki istotnie modyfikowały wzajemne oddziaływanie na siebie w procesie zmniejszania BZT5 w ściekach oczyszczonych badanych. Istotność wpływu omawianych czynników na wartości badanych wskaźników w ściekach oczyszczonych, zależy od wzajemnych interakcji między badanymi czynnikami.
Czasopismo
Rocznik
Tom
Strony
64--71
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr.
Twórcy
autor
- Cracow University of Economics, Poland, Department of Regional Economy
autor
- University of Agriculture in Cracow, Poland
autor
- University of Agriculture in Cracow, Poland
Bibliografia
- 1. Błażejewski, R. (2003). Sewerage of the village, Ed. PZITS, Branch of Wielkopolska, Poznań 2003. (in Polish)
- 2. Borowski, J. (2007). General conditions for the efficiency of mixing and oxidation in small reactors with mobile beds, Gas, Water and Sanitary Engineering, 11, pp. 24-27. (in Polish)
- 3. Chan, Y.J., Chong, M.F., Law, C.L. & Hassell, D.G. (2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater, Chemical Engineering Journal, 155, 1, pp. 1-18, DOI: 10.1016/j.cej.2009.06.041.
- 4. Chen, S., Sun, D. & Chung, J.S. (2008). Simultaneous removal of COD and ammonium from landfill leachate using an anaerobic-aerobic moving-bed biofilm reactor system, Waste Management, 28, 2, pp. 339-346, DOI: 10.1016/j.wasman.2007.01.004.
- 5. Chudoba, P. & Pannier, M. (1994). Nitrification kinetics in advanced sludge with both suspended and attached biomasses, Water Science and Technology, 29, 7, pp. 181-184, DOI: 10.2166/wst.1994.0339.
- 6. Helness, H. & Ødegaard, H. (1999). Biological phosphorus removal in a sequencing batch moving bed biofilm reactor, Water Science and Technology, 40, 4-5, pp. 161-168, DOI: 10.1016/s0273-1223(99)00498-9.
- 7. Henze, M., Harremoes, P., Jansen, J.C. & Arvin, E. (1997). Wastewater Treatment. Biological and Chemical Processes, 2nd edition, Berlin, Springer-Verlag, 77, 4, p. 1266, DOI: 10.1017/s0025315400038911.
- 8. Husham, I., He, Q. & Wisaam, S.A. (2014). Simultaneous organics and nutrients removal from domestic wastewater in a combined cylindrical anoxic/aerobic moving bed biofilm reactor, Research Journal of Applied Sciences, Engineering and Technology, 7, 9, pp. 1887-1895, DOI: 10.19026/rjaset.7.478.
- 9. Jokela, J.P.Y., Kettunen, R.H., Sormunem, K.M. & Rintala, J.A. (2002). Biological nitrogen removal from municipal leachate: Low-cost nitrification in biofilm and laboratory scale in-situ denitrification, Water Research, 36, 16, pp. 4079-4087, DOI: 10.1016/s0043-1354(02)00129-x.
- 10. Jóźwiakowski, K., Mucha, Z., Generowicz, A., Baran, S., Bielińska, J. & Wójcik, W. (2015). The use of multi-criteria analysis for selection of technology for a household WWTP compatible with sustainable development, Archives of Environmental Protection, 41, 3, pp. 76-82, DOI: 10.1515/aep-2015-0033.
- 11. Kruszelnicka, I., Ginter-Kramarczyk, D. & Karpezo, E. (2014). The moving bed biofilm reactor in the wastewater treatment – the history, application and perspectives. Water supply and sewerage, Instal, 5, pp. 64-67. (in Polish)
- 12. Makowska, M., Spychała, M., Błażejewski, R. & Borowski, J. (2005). Nitrogen removal by moving bed biological reactors with intermitent aeration, IWA Specialized Conference on Nutrient Management in Wastewater Treatment Processes and Recycle Streams, Kraków, pp. 1009-1013.
- 13. Mannina, G. & Viviani, G. (2009). Hybrid moving bed biofilm reactors: an effective solution for upgrading a large wastewater treatment plant, Water Science and Technology, 60, 5, pp. 1103-1116, DOI: 10.2166/wst.2009.416.
- 14. Mucha, J. (1994) Geostatistical methods in documenting deposits, Script, Department of Mine Geology, AGH, Cracow 1994, p. 155. (in Polish)
- 15. Ødegaard, H. (2006). Innovations in wastewater treatment: the moving bed process, Water Science and Technology, 53, 9, pp. 17-33, DOI: 10.2166/wst.2006.284.
- 16. Ødegaard, H., Gisvold, B. & Strickland, J. (2000). The influence of carrier size and shape in the moving bed biofilm process, Water Science and Technology, 41, 4-5, pp. 383-391, DOI: 10.2166/wst.2000.0470.
- 17. Ødegaard, H. & Rusten, B. (1993). Norwegian experiences with nitrogen removal in a moving bed biofilm reactor, Documentation of 9 EWPCA - ISWA Symp., Liquid Wastes Section, Munchen, Germany, 11-14 May, pp. 205-221.
- 18. Ødegaard, H., Rusten, B. & Siljudalen, J. (1998). The development of the moving bed biofilm process from idea to commercial product, European Water Management, 2, 3, pp. 36-43.
- 19. Ødegaard, H., Rusten, B. & Westrum, T. (1994). A new moving bed biofilm reactor - applications and results, Water Science and Technology, 29, 10-11, pp. 157-165, DOI: 10.2166/wst.1994.0757.
- 20. Pawełek, J. & Bugajski, P. (2017). Development of household sewage treatment plants in Poland - advantages and disadvantages of solutions, Acta Scientiarum Polonorum Formatio Circumiectus, 16, 2, pp. 3-14, DOI: 10.15576/asp.fc/2017.16.2.3. (in Polish)
- 21. Pawełek, J. (2016). Degree of development and functionality of the water supply and sewage systems in rural Poland, Regional Barometer, 14, 1, pp. 141-149.
- 22. Podedworna, J. & Żubrowska-Sudoł, M. (2001). Application of moving fluidized bed in sewage treatment, Gas, Water and Sanitary Engineering, 11, pp. 398-405. (in Polish)
- 23. Podedworna, J. & Żubrowska-Sudoł, M. (2006). Possibilities of limiting the capacity of biological reactors through the use of a moving bed, Gas, Water and Sanitary Engineering, 3, pp. 19-22. (in Polish)
- 24. Podedworna, J. & Żubrowska-Sudoł, M. (2011). Why waste technology used in bioreactors with a movable bed? Gas, Water and Sanitary Engineering, 9, pp. 324-327. (in Polish)
- 25. Rodgers, M. & Zhan, M. (2003). Moving-medium biofilm reactors, Environmental Science and Biotechnology, 2, 2-4, pp. 213-224, DOI: 10.1023/b:resb.0000040467.78748.1e.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-245a9671-47c2-4ca9-9af0-455c60b780f2