Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cassiterite (SnO2) which is the most important Sn-containing mineral, is extensively found in large quantities in discarded tailings. The recovery of cassiterite from discarded sulfide ore flotation tailings can reduce resource wastage and environmental pollution. The gravity separation technique can recover multiple valuable minerals, such as cassiterite, whose densities considerably differ from those of their associated gangue minerals. However, its recovery efficiency rapidly decreases as the mineral particle grain size decreases. To recover the finer valuable mineral particles from gravity separation tailings, flotation separation can be used as a supplementary method. In this study, the gravity and flotation separation techniques are combined to recover cassiterite from a sulfide ore tailing. The Sn grade and recovery of the final concentrate is 31.40% and 88.05%, respectively, thus indicating a highly efficient recovery of cassiterite by using the combined gravity and flotation separation technique. This study can be an important reference for recovering cassiterite from low-Sn-grade tailings.
Słowa kluczowe
Rocznik
Tom
Strony
206--215
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
autor
- Central South University
autor
- central south university
autor
- central south university
autor
- central south university
Bibliografia
- ABAKAWOOD, G.B., QUAST, K., ZANIN, M., ADDAIMENSAH, J., SKINNER, W., 2019. A study of the feasibility of upgrading rare earth elements minerals from iron-oxide-silicate rich tailings using Knelson concentrator and Wilfley shaking table. Powder Technol. 344, 897-913.
- ANGADI, S.I., SREENIVAS, T., JEON, H.S., BAEK, S.H., MISHRA, B.K., 2015. A review of cassiterite beneficiation fundamentals and plant practices. Miner. Eng. 70, 178-200.
- FOUCAUD, Y., DEHAINE, Q., FILIPPOV, L.O., FILIPPOVA, I.V., 2019. Application of Falcon Centrifuge as a Cleaner Alternative for Complex Tungsten Ore Processing. Minerals. 9(7).
- ORUC, F., OZGEN, S., SABAH, E., 2010. An enhanced-gravity method to recover ultra-fine coal from tailings: Falcon concentrator. Fuel. 89, 2433-2437.
- QIN, W.Q., REN, L.Y., XU, Y.B., WANG, P.P., MA, X.H., 2012. Adsorption mechanism of mixed salicylhydroxamic acid and tributyl phosphate collectors in fine cassiterite electro-flotation system. J. Cleaner Prod. 19(6), 1711-1717.
- QIN, W., XU, Y., LIU, H., REN, L., YANG, C., 2011. Flotation and Surface Behavior of Cassiterite with Salicylhydroxamic Acid. Ind. Eng. Chem. Res. 50(18), 10778-10783.
- REN, L.Y., ZHANG, Y.M., QIN, W.Q., BAO, S.X., WANG, J., 2014. Collision and attachment behavior between fine cassiterite particles and H2 bubbles. Trans. Nonferrous Met. Soc. China. 24(2), 520-527.
- SU, Z., ZHANG, Y., LIU, B., LU, M., LI, G., JIANG, T., 2017. Extraction and Separation of Tin from Tin-Bearing Secondary Resources: A Review. Jom, 69(11), 2364-2372.
- TAN, X., HE, F.Y., SHANG, Y.B., YIN, W.Z., 2016. Flotation behavior and adsorption mechanism of (1-hydroxy-2-methyl2-octenyl) phosphonic acid to cassiterite. Trans. Nonferrous Met. Soc. China. 26(9), 2469-2478.
- TIAN, M., GAO, Z., HAN, H., SUN, W., HU, Y., 2017a. Improved flotation separation of cassiterite from calcite using a mixture of lead (II) ion/benzohydroxamic acid as collector and carboxymethyl cellulose as depressant. Miner. Eng. 113, 68-70.
- TIAN, M., GAO, Z., JI, B., FAN, R., LIU, R., CHEN, P., SUN, W., HU, Y., 2018a. Selective flotation of cassiterite from calcite with salicylhydroxamic acid collector and carboxymethyl cellulose depressant. Minerals. 8, 316.
- TIAN, M., GAO, Z., SUN, W., HAN, H., SUN, L., HU, Y., 2018b. Activation role of lead ions in benzohydroxamic acid flotation of oxide minerals: New perspective and new practice. J. Colloid Interface Sci. 529, 150-160.
- TIAN, M., HU, Y., SUN, W., LIU, R., 2017b. Study on the mechanism and application of a novel collector-complexes in cassiterite flotation. Colloids Surf., A. 522, 635-641.
- TIAN, M., KHOSO, S.A., WANG, L., SUN, W., ZHANG, C., HU, Y., 2019. Selective separation behavior and its molecular mechanism of cassiterite from quartz using cupferron as a novel flotation collector with a lower dosage of Pb2+ ions. Appl. Surf. Sci. 486, 228-238.
- TIAN, M., LIU, R., GAO, Z., CHEN, P., HAN, H., WANG, L., ZHANG, C., SUN, W., HU, Y., 2018c. Activation mechanism of Fe (III) ions in cassiterite flotation with benzohydroxamic acid collector. Miner. Eng. 119, 31-37.
- TIAN, M., ZHANG, C., HAN, H., LIU, R., GAO, Z., CHEN, P., HE, J., HU, Y., SUN, W., YUAN, D., 2018d. Novel insights into adsorption mechanism of benzohydroxamic acid on lead (II)-activated cassiterite surface: An integrated experimental and computational study. Miner. Eng. 122, 327-338.
- TIAN, M., ZHANG, C., HAN, H., LIU, R., GAO, Z., CHEN, P., WANG, L., LI, Y., JI, B., HU, Y., 2018e. Effects of the preassembly of benzohydroxamic acid with Fe (III) ions on its adsorption on cassiterite surface. Miner. Eng. 127, 32-41.
- WU, X.Q., ZHU, J.G., 2006. Selective flotation of cassiterite with benzohydroxamic acid. Miner. Eng. 19(14), 1410-1417.
- ZHANG, L., KHOSO, S.A., TIAN, M., SUN, W., 2020. Indium pre-enrichment from a Canadian sulphide ore via flotation technique. Miner. Eng. 156.
- ZHANG, Y., HE, Y., ZHANG, T., ZHU, X., FENG, Y., ZHANG, G., BAI, X., 2018. Application of Falcon centrifuge in the recycling of electrode materials from spent lithium ion batteries. J. Cleaner Prod. 202, 736-747.
- ZHOU, Y., TONG, X., SONG, S., WANG, X., DENG, Z., XIE, X., 2014. Beneficiation of Cassiterite Fines from a Tin Tailing Slime by Froth Flotation. Sep. Sci. Technol. 49(3), 458-463.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-244e9377-3f29-46c1-a86f-f84f3d929106