PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Synchronization system for underwater acoustic communications using in shallow waters

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A reliable synchronization system of the transmitted data frame has a significant impact on the efficiency of the underwater communication system. This applies in particular to communication systems dedicated to work in shallow waters, where the phenomenon of multipath permanently occurs. To overcome these difficulties, the concept of a synchronization system consisting of two broadband signals of opposite monotonicity was presented. The method of receiving these signals has been described in detail. The stochastic channel model with Rician fading and the Watermark simulator was used to test the efficiency of the synchronization system in the underwater multipath channel.
Rocznik
Strony
art. no. 2023102
Opis fizyczny
Bibliogr. 23 poz., rys.
Twórcy
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Sonar Systems, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Department of Sonar Systems, ul. Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. A. Sanchez, S. Blanc, P. Yuste, J. J. Serrano; RFID Based Acoustic Wake-Up System for Underwater Sensor Networks; 2011 IEEE Eighth International Conference on Mobile Ad-Hoc and Sensor Systems, 2011, 873-878; DOI: 10.1109/MASS.2011.103
  • 2. J. Schmidt, K. Zachariasz, R. Salamon; Underwater communication system for shallow water using modified MFSK modulation; Hydroacoustics, 2005, 8, 179-184
  • 3. Y. Buchris, A. Amar; A statistical-based Doppler-tolerant criterion for underwater acoustic time synchronization; 2012 Oceans, Hampton Roads, USA, 14-19 October 2012, 1-10
  • 4. S.F. Mason, C.R. Berger, S. Zhou, P. Willett; Detection, synchronization, and Doppler scale estimation with multicarrier waveforms in underwater acoustic communication; IEEE J. Sel. Areas Commun., 2008, 26(9), 1638-1649
  • 5. G. Zhang, J.M. Hovem, H. Dong, S. Zhou, S. Du; An efficient spread spectrum pulse position modulation scheme for point-to-point underwater acoustic communication; Appl. Acoust., 2010, 71(1), 11-16
  • 6. X. Lurton; An Introduction to Underwater Acoustics: Principles and Applications; Springer, 2010
  • 7. G. Grelowska; Study of Seasonal Acoustic Properties of Sea Water in Selected Waters of the Southern Baltic; Polish Maritime Research, 2016, 23, 25-30; DOI: 10.1515/pomr-2016-0004
  • 8. B. Katsnelson, V. Petnikov, J. Lynch; Fundamentals of Shallow Water Acoustics; Springer, 2012
  • 9. P.C. Etter; Underwater Acoustic Modeling and Simulation; CRC Press, 2018
  • 10. M.K. Simon, M-S. Alouini; Digital Communication over Fading Channels; Wiley-IEEE Press, 2005
  • 11. A.F. Molisch; Wireless Communications; Wiley-IEEE Press, 2010
  • 12. B. Sklar; Rayleigh fading channels in mobile digital communication systems. Part I: Characterization; IEEE Communications Magazine, 1997, 35(7), 90-100
  • 13. B. Sklar; Rayleigh fading channels in mobile digital communication systems. Part II: Mitigation; IEEE Communications Magazine, 1997, 35(9), 148-155
  • 14. J. Marszal; Experimental Study of Silent Sonar; Archives of Acoustics, 2015, 39(1); DOI: 10.2478/aoa2014-0011
  • 15. J.J. Kroszczyński; Pulse compression by means of linear-period modulation; Proc. IEEE, 1969, 57(7), 1260-1266
  • 16. J. Yang, T.K. Sarkar; Doppler-invariant property of hyperbolic frequency modulated waveform; Microwave and optical technology letters, 2006, 48(8), 1174-1179
  • 17. J.G. Proakis; Digital Communication; McGrawHill, 2000
  • 18. A. Radosevic, J.G. Proakis, M. Stojanovic; Statistical characterization and capacity of shallow water acoustic channels; Proceedings of the OCEANS 2009 - EUROPE, Bremen, Germany, 2009, 1-8
  • 19. F. Ruiz-Vega, M.C. Clemente, P. Otero, J.F. Paris; Ricean shadowed statistical characterization of shallow water acoustic channels for wireless communications; arXiv, 2011; DOI: 10.48550/arXiv.1112.4410
  • 20. H. Kulhandjian, T. Melodia; Modeling underwater acoustic channels in short-range shallow water environments; Proceedings of the ACM International Conference on Underwater Networks & Systems, Rome, Italy, 2014, 1-5
  • 21. P. van Walree, F.X. Socheleau, R. Otnes, T. Jenserud; The Watermark Benchmark for Underwater Acoustic Modulation Schemes; IEEE J. Oceanic Eng., 2017, 42, 1007-1018; DOI: 10.1109/JOE.2017.2699078
  • 22. P. van Walree, R. Otnes, T. Jenserud; Watermark: A realistic benchmark for underwater acoustic modems; Proc. IEEE 3rd Underwater Commun. Netw. Conf., 2016, 1-4
  • 23. I. Kochańska, J.H. Schmidt, J. Marszal; Shallow Water Experiment of OFDM Underwater Acoustic Communications; Archives of Acoustics, 2020, 45(1), 11-18; DOI: 10.24425/aoa.2019.129737
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-244b2c77-b5e9-4573-839b-dbfebf90995c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.