PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Prediction of the Properties of Modified Phenol-Formaldehyde Composites Using Mathematical Modeling of the Composition of the Polymer Mixture

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents the results of studies of adhesive strength under shearing, thermal stability, and the content of the gel fraction of adhesive materials and enamels based on modified phenol-formaldehyde resins. Epoxy resin and polyvinylpyrrolidone were used to modify the phenol-formaldehyde resin. The influence of the content of components in the phenol-formaldehyde composition and the curing conditions on the properties of the obtained adhesive materials and coatings is analyzed. The effect of polyvinylpyrrolidone on internal stresses in adhesive joints has been established. By mathematical planning, the isolines of the characteristics of composite materials based on modified phenol-formaldehyde resin depending on their component’s compositions are plotted, and the regression coefficients are found, enabling one to get materials with predicted properties. From a technical and economic point of view, the following content of additives in modified phenol-formaldehyde resin is most optimal: epoxy resin from 25 to 50 wt%, polyvinylpyrrolidone from 0.5 to 1.0 wt%, curing catalyst from 1 to 2.5 wt%.
Twórcy
  • Łukasiewicz Research Network, Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej-Curie 55, 87-100 Torun, Poland
  • Department of Chemical Technology of Plastics Processing, Lviv Polytechnic National University, Bandera 12 St., 79013 Lviv, Ukraine
  • Department of Polymer Processing, Faculty of Mechanical Engineering, Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
  • Łukasiewicz Research Network, Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej-Curie 55, 87-100 Torun, Poland
  • Łukasiewicz Research Network, Institute for Engineering of Polymer Materials and Dyes, ul. M. Skłodowskiej-Curie 55, 87-100 Torun, Poland
  • Department Technologies, Materials and Computer Aided Production, Faculty of Mechanical Engineering, Technical University of Košice, Masiarska 74 St., 04001 Košice, Slovakia
Bibliografia
  • 1. Ahmed A.W. Methanol effect on color stability and shelf life of phenolic Resin compound under acidic conditions. Iraqi Journal of Chemical and Petroleum Engineering. 2009; 10(3): 57–63.
  • 2. Suberlyak O., Krasinskiy V., Sikora J., Krzyzak A. Ammonia-free, low-toxic press-materials with improved electroinsulating properties based on modified novolak phenol-formaldehyde resin. Chemistry & Chemical Technology. 2012; 6(2): 199–202.
  • 3. Bobrowski A., Drozynski D., Grabowska B. Studiesvon thermal decomposition of phenol binder using TG/DTG/DTA and FTIR-DRIFTS techniques in temperature range 20–500°C. China Foundry. 2018; 15(2): 145–151.
  • 4. Pošković E., Franchini F., Ferraris L., Carosio F., Grande M.A. Rapid Characterization Method for SMC Materials for a Preliminary Selection. Applied Sciences. 2021; 11(24): 12133.
  • 5. Paul B.K., Sanyal D. Glassy carbon as a novel mould material for replicative forming of precision glass optics. Science and Technology. 2018; 10(4): 58–66.
  • 6. Kamran M., Salamat N., Khan R.H., Ullah M.A., Hameed M.S., Pandit M.K. Computation of Revan Topological Indices for Phenol-Formaldehyde Resin. Journal of Mathematics. 2022; 2022: 8548771.
  • 7. Souza W.O., Garcia K., Dollinger C.F.A.V., Pardini L.C. Electrical Behavior of Carbon Fiber/Phenolic Composite during Pyrolysis. Materials Research. 2015; 18(6): 1209–1216.
  • 8. Gazzani S., Nassiet V., Habas J-P., Freydier C., Hilleshein A. High Temperature Epoxy Foam: Optimization of Process Parameters. Polymers. 2016; 8(6): 215.
  • 9. Zheng T., Wang X., Lu C., Zhang X., Ji Y., Bai C., Chen Y., Qiao Y. Studies on Curing Kinetics and Tensile Properties of Silica-Filled Phenolic Amine/Epoxy Resin Nanocomposite. Polymers. 2019; 11(4): 680.
  • 10. Han W. Graphene and Carbon Nanotubes Synergistically Improved the Thermal Conductivity of Phenolic Resin. MATEC Web of Conferences. 2017; 100: 04033.
  • 11. Jiang L., Wang L.H., Han Z.D. Domestic Research Progress in Graphene Oxide/ Phenolic Formaldehyde Resin Composites. Journal of Harbin University of Science and Technology. 2017; 22(2): 12–17.
  • 12. Zhao Y., Xu R., Xiao Y., Wang H., Zhang W., Zhang G. Mechanical Performances of Phenolic Modified Epoxy Resins at Room and High Temperatures. Coatings. 2022; 12(5): 643.
  • 13. Hu Y., Geng W., You H., Wang Y., Loy D. Modification of a Phenolic Resin with Epoxy- and Methacrylate-Functionalized Silica Sols to Improve the Ablation Resistance of Their Glass Fiber-Reinforced Composites. Polymers. 2014; 6(1): 105–113.
  • 14. Shukla S.K., Srivastava K., Srivastava D. Studies on the Thermal, Mechanical and Chemical Resistance Properties of Natural Resource Derived Polymers. Materials Research. 205; 18(6): 1217–1223.
  • 15. Dulebova L., Greškovič F., Sikora J., Krasinskyi V. Analysis of the Mechanical Properties Change of PA6/MMT Nanocomposite System after Ageing. Key Engineering Materials. 2017; 756: 52–59.
  • 16. Krasinskyi V., Suberlyak O., Zemke V., Klym Y., Gaidos I. The role of polyvinylpyrrolidone in the formation of nanocomposites based on acompatible polycaproamide and polypropylene. Chemistry & Chemical Technology. 2019; 13: 59–63.
  • 17. Gorman J.W., Hinman J.E. Simplex Lattice Designs for Multicomponent Systems. Technometrics. 1962; 4(4): 463–487.
  • 18. Krasinskyi V., Jachowicz T., Dulebova L., Gajdos I., Malinowski R. The Manufacturing of Composite Materials in the Matrix of Modified Phenol-Formaldehyde Resins. Advances in Science and Technology Research Journal 2021; 15(4): 267–272.
  • 19. Valvo P.S., Dardano N., Bennati S. A mechanical model for FRP-strengthened beams in bending. Frattura ed Integrità Strutturale. 2012; 6(22): 39–55.
  • 20. Krasinskyi V., Kochubei V., Klym Y., Suberlyak O. Thermogravimetric research into composites based on the mixtures of polypropylene and modified polyamide. Eastern-European Journal of Enterprise Technologies. 2017; 4(12–88): 44–50.
  • 21. Schuster C., Rennhofer H., Amenitsch H., Lichtenegger H.C., Jungbauer A., Tscheliessing R. Metal-Insulator Transition of Ultrathin Sputtered Metals on Phenolic Resin Thin Films: Growth Morphology and Relations to Surface Free Energy and Reactivity. Nanomaterials. 2021; 11(3): 589.
  • 22. Krasinskyi V., Suberlyak O., Dulebova L., Antoniuk V. Nanocomposites on the Basis of Thermoplastics and Montmorillonite Modified by Polyvinylpyrrolidone. Key Engineering Materials. 2017; 756: 3–10.
  • 23. Jamal-Omidi M., Mohammadi S.M.R. Investigation of Defect Effects on Adhesively Bonded Joint Strength Using Cohesive Zone Modeling. Journal of Mechanical Engineering. 2018; 68(3): 5–24.
  • 24. Liu Z., Deng X., Guo H., Zhang Y., Wei D., Zhang D. Development and Performance Evaluation of Thin-Layer Color Antiwearing Paving Materials. Advances in Civil Engineering. 2021; 2021: 5584325.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2444bb21-aa8a-4f00-9bd8-42e1b0e77bb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.