PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioleaching of selected metals from waste printed circuit boards by fungs

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Bioługowanie wybranych metali z odpadowych obwodów drukowanych z wykorzystaniem grzybów mikroskopowych
Języki publikacji
EN
Abstrakty
EN
The growing demand for non-ferrous metals over the last centuries has resulted in constant extraction of natural resources - in case of many crucial and most widely used raw materials, accessible and high-quality deposits are already close to being depleted. Waste electrical and electronic equipment (WEEE) constitutes a rich, secondary source of metals, the amount of which in the EU is increasing every year. In order to increase resource efficiency and contribute to a circular economy, it is necessary to improve the processing and recycling of waste electrical and electronic equipment at the end of an electronic lifetime. !e choice of a suitable method of processing this waste is vital due to the complex and materially diverse composition of WEEE. Waste printed circuit boards (WPCBs) that constitute approx. 3-5% of WEEE by weight are of particular importance from both environmental and economic point of view. The article investigates the recovery of Cu, Ag and Al from WPCBs using an industrial fungal strain of Aspergillus niger. The bioleaching process was carried out using 3 methods (one-step, two-step and spent medium) in an incubator with shake depending on the contact time and pulp density. !e research presented in the article aimed at assessing the usefulness of the biotechnological method for leaching of selected metals from e-waste. The results indicate that it is possible to mobilise metals from the WPCBs using microorganisms.
PL
Rosnący popyt na metale nieżelazne w ciągu ostatnich stuleci wywierał stałą presję na zasoby naturalne. W przypadku wielu ważnych i najczęściej używanych surowców na wyczerpaniu są już złoża łatwo dostępne i wysokiej jakości. Bogate, wtórne źródło metali stanowią odpady elektryczne i elektroniczne, których ilość w UE corocznie wzrasta. W celu zwiększenia efektywności gospodarowania zasobami i przyczynienia się do gospodarki o obiegu zamkniętym niezbędne jest usprawnienie przetwarzania i recyklingu urządzeń elektronicznych (WEEE) pod koniec ich życia. Dobór odpowiedniej metody przetwarzania tych odpadów jest bardzo ważny ze względu na złożony i różnorodny, pod względem materiałowym, skład zużytego WEEE. Szczególne znaczenie zarówno pod kątem środowiskowym jak i gospodarczym mają odpadowe obwody drukowane (WPCBs) stanowiące 3-5% wagowych WEEE. W artykule badano odzysk Cu, Ag i Al z WPCBs z wykorzystaniem przemysłowego szczepu grzyba pleśniowego Aspergillus niger. Proces bioługowania prowadzono 3 metodami (jednoetapowy, dwuetapowy, z wykorzystaniem pożywki zawierającej metabolity w inkubatorze z wytrząsaniem w zależności od czasu kontaktu oraz różnych gęstości zawiesiny. Badania przedstawione w artykule miały na celu ocenę przydatności metody biotechnologicznej do ługowania wybranych metali z odpadów elektronicznych. Wyniki wskazują, że jest możliwe mobilizowanie metali z WPCBs przy użyciu mikroorganizmów.
Rocznik
Strony
161--169
Opis fizyczny
Bibliogr. 38 poz., ryc., wykr.
Twórcy
autor
  • Department of Environmental Engineering, AGH University of Science and Technology, 30 Mickiewicza, Krakow, 30-059, Poland
  • Department of Environmental Engineering, AGH University of Science and Technology, 30 Mickiewicza, Krakow, 30-059, Poland
Bibliografia
  • 1. Akcil A., Erust C., Gahan CS., Ozgun M., Sahin M., Tuncuk A. 2015. Precious metal recovery from waste printed circuit boards using cyanide and non-cyanide lixiviants--A review. Waste Management, 45, 258-271
  • 2. Amiri, F., Mousavi, S.M., Yaghmaei, S., Barati, M. 2012. Bioleaching kinetics of a spent refinery catalyst using Aspergillus niger at optimal conditions. Biochem Eng J 67, 208– 217
  • 3. Brandl H., Bosshard R., Wegmann H. 2001. Computer-munching microbes: metal leaching from electronic scrap by bacteria and fungi. Hydrometallurgy, 59 (2–3), 319-326
  • 4. from waste mobile phone PCBs by using a cyanogenic bacterium. Miner. Eng., 24 (11), 1219-1222 Chi T.D., Lee J.C., Pandey B.D., Yoo K., Jeong J. 2011. Bioleaching of gold and copper
  • 5. Cui J., Zhang L. 2008. Metallurgical recovery of metals from electronic waste: a review. Journal of Hazardous Materials, 158(2-3), 228-256
  • 6. Cui, H., Anderson, C.G., 2016. Literature review of hydrometallurgical recycling of printed circuit boards (PCBs). J. Adv. Chem. Eng. 6, 142-153.
  • 7. Dodson J.R., . Hunt J., Parker H.L., Yang Y., Clark J.H. 2012. Elemental sustainability: Towards the total recovery of scarce metals. Chemical Engineering and Processing: Process Intensification 51, 69-78
  • 8. Faraji F., Golmohammadzadeh R., Rashchi F., Alimardani N. 2018. Fungal bioleaching of WPCBs using Aspergillus niger: Observation, optimization and kinetics. Journal of Environmental Management 217, 775-787
  • 9. Faramarzi M.A., Stagars M., Pensini E., Krebs W., Brandl H. 2004. Metal solubilization from metal-containing solid materials by cyanogenic Chromobacterium violaceum. J. Biotechnol., 113 (1-3), 321-326
  • 10. Hao J., Wang Y., Wua Y., Guo F. 2020. Metal recovery from waste printed circuit boards: A review for current status and perspectives. Resources, Conservation and Recycling, 157
  • 11. Hong Y., Valix M. 2014. Bioleaching of electronic waste using acidophilic sulfur oxidising bacteria. Journal of Cleaner Production 65, 465-472
  • 12. Horeh, N.B., Mousavi, S.M., Shojaosadati, S.A., 2016. Bioleaching of valuable metals from spent lithium-ion mobile phone batteries using Aspergillus Niger. J. Power Sources 320, 257-266
  • 13. https://ec.europa.eu/environment/waste/weee/index_en.htm
  • 14. Ilyas S., Lee J.C.. 2013. Fungal leaching of metals from electronic scrap. Miner. Metall. Process., 30 (3), 151-156
  • 15. Ilyas S., Ruan C., Bhatti H.N., Ghauri M.A., Anwar M.A. 2010. Column bioleaching of metals from electronic scrap. Hydrometallurgy, 101 (3–4), 135-140
  • 16. Işıldara A., van Hullebuscha Eric D., Lenzd M, Du Laingf G., Marrag A., Cesarog A., Pandah S., Akcilh A., Kucukeri M.A, Kuchtai K. 2019. Biotechnological strategies for the recovery of valuable and critical raw materials from waste electrical and electronic equipment (WEEE) – A review. Journal of Hazardous Materials 362, 467–481
  • 17. Jadhav U., Su C., Hocheng H. 2016. Leaching of metals from printed circuit board powder by an Aspergillus niger culture supernatant and hydrogen peroxide. RSC Adv., 6 (49), 43442-43452
  • 18. Karwowska E., Andrzejewska-Morzuch D., Lebkowska M., Tabernacka A., Wojtkowska M., Telepko A., Konarzewska A. 2014. Bioleaching of metals from printed circuit boards supported with surfactant-producing bacteria. J. Hazard. Mater., 264, 203-210
  • 19. Kaya, M., 2017. Recovery of metals and nonmetals from waste printed circuit boards (PCBs) by physical recycling techniques. Energy Technology, pp. 433-451
  • 20. Kolenčik M., Urik M., Čerňansky S., Molnarova M., Matuš P. 2013. Leaching of Zinc, Cadmium, Lead and copper from electronic scrap using organic acids and the Aspergillus Niger strain. Fresenius Environmental Bulletin 22 (12)
  • 21. Li H., Eksteen J., Oraby E. 2018. Hydrometallurgical recovery of metals from waste printed circuit boards (WPCBs): Current status and perspectives – A review. Resources, Conservation and Recycling, 139, 122-139
  • 22. Lu Y., Zhenming X. 2016. Precious metals recovery from waste printed circuit boards: a review for current status and perspective. Resour. Conserv. Recycl., 113, 28-39
  • 23. Netpae T., Suckley S. 2019. Bioleaching of Cu and Pb from printed circuit boards by Rhizopus oligosporus and Aspergillus Niger. Environmental and Experimental Biology, 17, 85–89
  • 24. Pollmann K., Kutschke S., Matys S., Raff J., Hlawacek G., L.Lederer F. 2018. Bio-recycling of metals: Recycling of technical products using biological applications. Biotechnology Advances 36(4), 1048-1062
  • 25. Rasoulnia P., Mousavi S.M. 2016. Maximization of organic acids production by Aspergillus niger in a bubble column bioreactor for V and Ni recovery enhancement from power plant residual ash in spent-medium bioleaching experiments. Bioresource Technology, 216, 729-736
  • 26. Santhiya, D., Ting, Y.P., 2005. Bioleaching of spent refinery processing catalyst using Aspergillus Niger with high-yield oxalic acid. J. Biotechnol. 116, 171-184.
  • 27. Shah M.B., Tipre D.R., Purohit M.S., Dave S.R. 2015. Development of two-step process for enhanced biorecovery of Cu- Zn-Ni from computer printed circuit boards. J. Biosci. Bioeng., 120 (2), 167-173
  • 28. Wang S., Zheng Y., Yan W., Chen L., Dummi Mahadevan G., Zhao F. 2016. Enhanced bioleaching efficiency of metals from e-wastes driven by biochar. J. Hazard. Mater., 320, 393-400
  • 29. Willscher S., M. Katzschner, K. Jentzsch, S. Matys, H. Pollmann. 2007. Microbial leaching of metals from printed circuit boards. Adv. Mater. Res., 20-21, 99-102
  • 30. Woynarowska A., Żukowski W. 2012. Modern methods of electronic waste recycling. Czasopismo Techniczne Chemia, 16 (109), 175–185
  • 31. Wu, H.Y., Ting, Y.P., 2006. Metal extraction from municipal solid waste (MSW) incinerator fly ash - chemical leaching and fungal bioleaching. Enzyme Microb. Technol. 38, 839-847.
  • 32. Xia M., Bao P., Liu A., Wang M., Shen Li, Yu R., Liu Y., Chen M., Li J., Wu X., Qiu G., Zeng W. 2018. Bioleaching of lowgrade waste printed circuit boards by mixed fungal culture and its community structure analysis. Resources, Conservation and Recycling, 136, 267-275
  • 33. Xia M.C., Wang Y.P., Peng T.J., Shen L., Yu R.L., Liu Y.D., Chen M., Li J.K., Wu X.L., Zeng W.M. 2017. Recycling of metals from pretreated waste printed circuit boards effectively in stirred tank reactor by a moderately thermophilic culture. J. Biosci. Bioeng., 123 (6), 714-721
  • 34. Xiang, Y., Wu, P., Zhu, N., Zhang, T., Liu, W., Wu, J., Li, P. 2010. Bioleaching of copper from waste printed circuit boards by bacterial consortium enriched from acid mine drainage. J Hazard Mater 184, 812-818
  • 35. Xu, T.J., Ramanathan, T., Ting, Y.P., 2014. Bioleaching of incineration fly ash by Aspergillus Niger - precipitation of metallic salt crystals and morphological alteration of the fungus. Biotechnol. Rep. 3, 8-14.
  • 36. Yang Y., Chen S., Li S., Chen M., Chen H., Liu B. 2014. Bioleaching waste printed circuit boards by Acidithiobacillus ferrooxidans and its kinetics aspect. J. Biotechnol., 173, 24-30
  • 37. Zhang Y., Liu S., Xie H., Zeng X., Li J. 2012. Current Status on Leaching Precious Metals from Waste Printed Circuit Boards. Procedia Environmental Sciences, 16, 560-568
  • 38. Zhu, N., Xiang, Y., Zhang, T., Wu, P., Dang, Z., Li, P., Wu, J. 2011. Bioleaching of metal concentrates of waste printed circuit boards by mixed culture of acidophilic bacteria. J. Hazard Mater 192, 614-619
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24401708-dfe0-44c8-b623-c32aba6191aa
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.