Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The primary aim of this study is to conduct a comprehensive comparative evaluation of implicit and explicit finite element solution methodologies employed in structural analysis. This research examines the characteristics and performance differences between these two approaches, using two diverse case studies as illustrative examples. The FEM solution was performed nonlinearly by defining the linear elastic and plasticity properties of the material. The first case study focuses on a three-point bending test of a beam subjected to a slow deformation rate, while the second case study examines the damage mechanics of a pressure vessel experiencing a high deformation rate. It was found that the implicit solution method operates under the premise that displacement is independent of time, allowing for a more stable analysis in certain scenarios. On the other hand, the explicit method inherently incorporates time as a variable, making displacement a function of time. Once a solid understanding of the system's response is established, transitioning to explicit methods for more dynamic scenarios can lead to a more comprehensive and effective resolution of complex engineering problems. By carefully selecting the appropriate analysis method based on the specific characteristics of the loading conditions and the nature of the forces involved, engineers can optimize their simulations and enhance the reliability of their results.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
407--417
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
autor
- Engineering Faculty, Mechanical Engineering Department, Kırklareli University, Kırklareli, Turkey
autor
- Engineering Faculty, Mechanical Engineering Department, Trakya University, Edirne, Turkey
autor
- Engineering Faculty, Mechanical Engineering Department, Trakya University, Edirne, Turkey
autor
- Faculty of Mechanical Engineering, Lublin University of Technology, Lublin, Poland
Bibliografia
- 1. A., Kalliyath S.A., Rodriguez-Millan M., Shenoy B. Crashworthiness analysis of filled/unfilled automotive bumper beams subjected to head-on collision events: a numerical approach. Cogent Eng 2024; 11. https://doi.org/10.1080/23311916.2024.2399737.
- 2. Cai W., Wen Z., Jin X., Zhai W. Dynamic stress analysis of rail joint with height difference defect using finite element method. 2007; 14: 1488–1499. https://doi.org/10.1016/j.engfailanal.2007.01.007.
- 3. Ringsberg J.W., Li Z., Johnson E., Kuznecovs A. Reduction in ultimate strength capacity of corroded ships involved in collision accidents. 2018; 5302. https://doi.org/10.1080/17445302.2018.1429158.
- 4. Noels L., Stainier L., Ponthot J.P. Combined implicit/explicit algorithms for crashworthiness analysis. Int J Impact Eng 2004; 30: 1161–1177. https://doi.org/10.1016/j.ijimpeng.2004.03.004.
- 5. Bau I., Umwelt G., Leidinger L.F. Explicit isogeometric b-rep analysis for nonlinear dynamic crash simulations integrating design and analysis by means of trimmed multi-patch shell structures. 2020.
- 6. Liu J.L., Qin L.Y., Wu S.Y., Yan J.Y. An efficient iterative method for vehicle-track nonlinear coupled dynamic analysis based on explicit and implicit algorithms. 2024. https://doi.org/10.1007/s42417-024-01504-y.
- 7. Soares D., Sales I. de S., Pinto L.R., Mansur W.J. A study on adaptive implicit–explicit and explicit–explicit time integration procedures for wave propagation analyses. Acoustics 2024; 6: 651–680. https://doi.org/10.3390/acoustics6030036.
- 8. Gavalas E. Mesh sensitivity analysis on implicit and explicit methods for rolling simulation. 2018; 9: 465–474. https://doi.org/10.1108/IJSI-07-2017-0046.
- 9. Kut S., Stachowicz F. Bending moment and cross-section deformation of a box profile. Adv Sci Technol Res J 2020; 14: 85–93. https://doi.org/10.12913/22998624/118552.
- 10. Hai L., Zhang H., Wriggers P., Huang Y Jie., Feng Y., Junker P. A novel semi-explicit numerical algorithm for efficient 3D phase field modelling of quasi-brittle fracture. Comput Methods Appl Mech Eng 2024; 432: 117416. https://doi.org/10.1016/j.cma.2024.117416.
- 11. Paper O. Computationally efficient stress reconstruction from full-field strain. 2024; 0: 849–872. https://doi.org/10.1007/s00466-024-02458-4.
- 12. Song H., Yang J., Du X., Wang M. Explicit-explicit sequence calculation method for the wheel/rail rolling contact problem based on ANSYS/LS-DYNA. 2015; 3.
- 13. Liao B.B., Jia L.Y. Finite element analysis of dynamic responses of composite pressure vessels under low velocity impact by using a three-dimensional laminated media model. Thin-Walled Struct 2018; 129: 488–501. https://doi.org/10.1016/j.tws.2018.04.023.
- 14. Rohit G., Santosh M.S., Kumar M.N., Raghavendra K. Numerical investigation on structural stability and explicit performance of high-pressure hydrogen storage cylinders. Int J Hydrogen Energy 2023; 48: 5565–5575. https://doi.org/10.1016/j.ijhydene.2022.11.154.
- 15. Liu P.F., Xing L.J., Zheng J.Y. Failure analysis of carbon fiber/epoxy composite cylindrical laminates using explicit finite element method. Compos Part B Eng 2014; 56: 54–61. https://doi.org/10.1016/j.compositesb.2013.08.017.
- 16. Miłek T. Experimental determination of material boundary conditions for computer simulation of sheet metal deep drawing processes. Adv Sci Technol Res J 2023; 17: 360–373. https://doi.org/10.12913/22998624/172364.
- 17. İrsel G. Experimental, analytical, and numerical investigations on the flexural and fatigue behavior of steel thin-walled X-section beam. Proc Inst Mech Eng Part C J Mech Eng Sci 2022; 236: 11041–11065. https://doi.org/10.1177/09544062221111053.
- 18. He L., Jiang Y., Zhang W. Effect of jack thrust angle change on mechanical characteristics of shield tunnel segmental linings considering additional constrained boundaries. Appl Sci 2022; 12. https://doi.org/10.3390/app12104855.
- 19. Tran H.T. A new energy-based local damage model for dynamic analysis of. Comput Mech 2024. https://doi.org/10.1007/s00466-024-02547-4.
- 20. Tian K., Zhi J., Tan V.B.C., Tay T.E. An explicit finite element discrete crack analysis of open hole tension failure in composites. Compos Struct 2024; 345: 118411. https://doi.org/10.1016/j.compstruct.2024.118411.
- 21. Skrzat A., Wójcik M. Numerical modeling of superplastic punchless deep drawing process of a TI-6AL-4V titanium alloy. Adv Sci Technol Res J 2020; 14: 127–136. https://doi.org/10.12913/22998624/114029.
- 22. Nieoczym A., Drozd K. Fractographic assessment and FEM energy analysis of the penetrability of a 6061-T aluminum ballistic panel by a fragment simulating projectile. Adv Sci Technol Res J 2021; 15: 50–57. https://doi.org/10.12913/22998624/129951.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-243f309e-f00e-4096-81e8-3a132047a4bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.