PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The modelling of tomato crop response to the climate change with different irrigation schemes

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The inequality between available water supplies and growing water demand from diverse sectors, as well as the predicted climate changes are putting significant pressures on Egypt’s food security. There is a nation-wide demand for new scientifically proven on-farm practices to boost water productivity of major food crops. The objective of this study was to explore the use of various deficit irrigation schemes to improve water productivity (WP) of tomato cultivated in Egypt under distinct climate change scenarios, RCP4.5 and RCP8.5, in three time-steps of the reference period (2006-2016), 2030s, and 2050s. The AquaCrop model was used to simulate the influence of climate change on the tomato crop, as well as two deficit irrigation application schemes for the full growing season and the regulated application for the initial and maturity crop stages. With the same irrigation method, the predicted WP increased in a general pattern across all climate change scenarios. The combination of irrigation schedule with the 80% deficit irrigation can enhance WP near the optimum level (approximately 2.2 kg∙m-3), especially during early and mature stages of the crop, saving up to 16% of water. The results showed that the expected temperature rise by 2050s would reduce the crop growth cycle by 3-11 days for all irrigation treatments, resulting in a 1-6% decrease in crop evapotranspiration (ETc) and affecting the dry tomato yield with different patterns of increase and decrease due to climate change.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
42--52
Opis fizyczny
Bibliogr. 43 poz., tab., wykr.
Twórcy
  • Ain Shams University, Faculty of Agriculture, P.O. Box 68, Hadayek Shoubra 11241, Egypt
  • Agriculture Engineering Research Institute (AEnRI), Agricultural Research Center (ARC), Cairo, Egypt
  • International Centre for Agricultural Research in the Dry Areas (ICARDA), Cairo, Egypt
  • Ain Shams University, Faculty of Agriculture, P.O. Box 68, Hadayek Shoubra 11241, Egypt
  • King Salman International University, Faculty of Desert Agriculture, El Tor, Egypt
Bibliografia
  • Abdel-Mawgoud, A.M.R. et al. (2021) “Impact of climate change on water use, growth and production of tomato crop in Bahrain: A simulation case study,” Journal of Applied Horticulture, 23(2), pp. 101–105. Available at: https://doi.org/10.37855/jah.2021.v23i02.19.
  • Abuarab, M.E., Shahien, M.M. and Hassan, A.M. (2012) “Effect of regulated deficit irrigation and phosphorus fertilizers on yield, water use efficiency and total soluble solids of tomato,” American-Eurasian Journal of Agriculture and Environmental Sciences, pp. 1295–1304. Available at: https://doi.org/10.5829/idosi.aejaes.2012.12.10.1904.
  • Ainsworth, E.A. and Rogers, A. (2007) “The response of photosynthesis and stomatal conductance to rising [CO2]: Mechanisms and environmental interactions,” Plant, Cell & Environment, 30(3), pp. 258–270. Available at: https://doi.org/10.1111/j.1365-3040.2007.01641.x.
  • Allen, R.G. et al. (1998) “Crop evapotranspiration: guidelines for computing crop water requirements,” FAO Irrigation and Drainage Paper, 56.
  • Attaher, S.M. (2012) “Developing on-farm irrigation schemes for current and future climate conditions on the western bank of Lake Nasser,” Misr Journal of Agricultural Engineering, 29(2), pp. 725–734. Available at: https://doi.org/10.21608/mjae.2012.102337.
  • Bhandari, R., Neupane, N. and Adhikari, D.P. (2021) “Climatic change and its impact on tomato (Lycopersicum esculentum L.) production in plain area of Nepal,” Environmental Challenges, 4, 100129. Available at: https://doi.org/10.1016/j.envc.2021.100129.
  • Biratu, W. (2018) “Review on the effect of climate change on tomato (Solanum lycopersicon) production in Africa and mitigation strategies,” Journal of Natural Science Research, 8(5), pp. 62–70.
  • Bird, D.N. et al. (2016). “Modelling climate change impacts on and adaptation strategies for agriculture in Sardinia and Tunisia using AquaCrop and value-at-risk,” Science of the Total Environment, 543, pp. 1019–1027. Available at: http://doi.org/10.1016/j.scito-tenv.2015.07.035.
  • CAPMAS (2019) Egypt in figures. Cairo: Central Agency for Public Mobilization and Statistics. Available online: https://www.capmas.gov.eg/Pages/StaticPages.aspx?page_id=5035 (accessed on 15 April 2019).
  • Chai, Q. et al. (2016) “Regulated deficit irrigation for crop production under drought stress. A review,” Agronomy for Sustainable Development, 36(1), pp. 1–21. Available at: https://www.capmas.gov.eg/Admin/News/PressRelease/20212191233_%D8%A7%D9%84%D9%83%D8%AA%D8%A7%D8%A8-e.pdf
  • Darand, M. and Mansouri Daneshvar, M.R. (2015) “Variation of agroclimatic indices in Kurdistan province of Iran within 1962–2012,” Modeling Earth Systems and Environment, 1, 7. Available at: https://doi.org/10.1007/s4080 8-015-0010-9.
  • Egypt Data Portal (2018) Cropping area and production of winter crop. Available at: https://egypt.opendataforafrica.org/xksjnwd/cropping-area-and-production-of-winter-crops (Accessed: October 10, 2022).
  • FAO (2015a) AquaCrop. Rome: Food and Agriculture Organization of the United Nations. Available at: https://www.fao.org/aquacrop (Accessed: June 26, 2015).
  • FAO (2015b) Climate change and food security: risks and responses. Rome: Food and Agriculture Organization of the United Nation.
  • FAO (2015c). Land & Water. ETo calculator. Rome: Food and Agriculture Organization of the United Nations. Available at: http://www.fao.org/nr/water/eto.html (Accessed: June 26, 2015).
  • FAOSTAT (no date) Crops and livestock products. Rome: Food and Agriculture Organization of the United Nations (FAO) Available online: http://www.fao.org/faostat/en/#data/QC (Accessed: July 6, 2019).
  • Giuliani, M.M. et al. (2019) “Identifying the most promising agronomic adaptation strategies for the tomato growing systems in Southern Italy via simulation modeling,” European Journal of Agronomy, 111, 125937. Available at: https://doi.org/10.1016/j.eja.2019.125937.
  • Hamed, M.M., Nashwan, M.S. and Shahid, S. (2022) “A novel selection method of CMIP6 GCMs for robust climate projection,” International Journal of Climatology, 42(8), pp. 4258–4272. Available at: https://doi.org/10.1002/joc.7461.
  • Hedley, C.B. et al. (2014) “Water: Advanced irrigation technologies” in N.K. Alfen van (ed.) Encyclopedia of agriculture and food systems. Oxford: Elsevier LTD, pp. 378–406. Available at: https://doi.org/10.1016/B978-0-444-52512-3.00087-5.
  • Hoogenboom, G. et al. (2014). The Decision Support System for Agrotechnology Transfer (DSSAT) version 4.6. Poster Number 238. Washington, DC: DSSAT Foundation: Prosser. Available at: https://scisoc.confex.com/crops/2014am/webprogram/Paper89680.html (Accessed: November 10, 2014).
  • Hsiao, T.C. et al. (2009) “AquaCrop – The FAO model to simulate yield response to water: Parameterization and testing for corn,” Agronomy Journal, 101(3), pp. 448–459. Available at: https://doi.org/10.2134/agronj2008.0218s.
  • Incoom, A.B.M. et al. (2022) “Impacts of climate change on crop and irrigation water requirement in the Savannah regions of Ghana,” Journal of Water and Climate Change, 13(9), pp. 3338–3356. Available at: https://doi.org 10.2166/wcc.2022.129.
  • IPCC (2014) Climate change 2014: Impacts, adaptation, and vulnerability. Part B: Regional aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press. Available at: https://doi.org/10.1017/CBO9781107415386.
  • Jones, J.W. et al. (1991) “A dynamic tomato growth and yield model (TOMGRO),” Transactions of the ASAE, 34(2), pp. 0663–0672. Available at: https://doi.org/10.13031/2013.31715.
  • Katerji, N., Campi, P. and Mastrorill, M. (2013) “Productivity, evapotranspiration, and water use efficiency of corn and tomato crops simulated by AquaCrop under contrasting water stress conditions in the Mediterranean region,” Agricultural Water Management, 130, pp. 14–26. Available at: http://doi.org/10.1016/j.agwat.2013.08.005.
  • Keating, B.A. et al. (2001) “NWheat: Documentation and performance of a wheat module for APSIM,” Tropical Agiculture Technical Memorandum, 9. Indooroopilly: CSIRO Tropical Agriculture. Available at: https://doi.org/10.25919/g58j-5t69.
  • Keating, B.A. et al. (2003) “An overview of APSIM, a model designed for farming systems simulation,” European Journal of Agronomy, 18(3–4), pp. 267–288. Available at: https://doi.org/10.1016/S1161-0301(02)00108-9.
  • Kottek, M. et al. (2006) “World map of the Köppen–Geiger climate classification updated,” Meteorologische Zeitschrift, 15(3), pp. 259–263. Available at: https://doi.org/10.1127/0941-2948/2006/0130.
  • Lipiec, J. et al. (2013) “Effect of drought and heat stresses on plant growth and yield: A review,” International Agrophysics, 27, pp. 463–477. Available at: https://doi.org/10.2478/intag-2013-0017.
  • Louski, M., Linker, R. and Teitel, M. (2013) “Development of an object-oriented version of TOMGRO for a web-based decision suport system,” IFAC Proceedings Volumes, 47(3), pp. 121–126. Available at: https://doi.org/10.3182/20130828-2-SF-3019.00018.
  • Luis, S.P. et al. (2014) “Crop evapotranspiration estimation with FAO56: Past and future,” Agricultural Water Management, 147, pp. 4–20. Available at: https://doi.org/10.1016/j.agwat.2014.07.031.
  • McSweeney, C.F. et al. (2015) “Selecting CMIP5 GCMs for downscaling over multiple regions,” Climate Dynamics, 44, pp. 3237–3260. Available at: https://doi.org/10.1007/s00382-014-2418-8.
  • Patanè, C., Tringali, S. and Sortino, O. (2011) “Effects of deficyt irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions,” Scientia Horticulturae, 29, pp. 590–596. Available at: https://doi.org/10.1016/j.scienta.2011.04.03.
  • Pathak, T.B. and Stoddard, C.S. (2018) “Climate change effects on the processing tomato growing season in California using growing degree day model,” Modeling Earth Systems and Environment, 4, pp. 765–775. Available at: https://doi.org/10.1007/s40808-018-0460-y.
  • Raes, D. et al. (2009) “AquaCrop-The FAO crop model to simulate yield response to water: II. Main algorithm and software description,” Agronomy Journal, 101(3), pp. 438–447. Available at: https://doi.org/10.2134/agronj2008.0140s.
  • Ramos, R.S. et al. (2019) “Risk of spread of tomato yellow leaf curl virus (TYLCV) in tomato crops under various climate change scenarios,” Agricultural Systems, 173, pp. 524–535. Available at: https://doi.org/10.1016/j.agsy.2019.03.020.
  • Saadi, S. et al. (2015) “Climate change and Mediterranean agriculture: Impacts on winter wheat and tomato crop evapotranspiration, irrigation requirements and yield,” Agricultural Water Management, 147, pp. 103–115. Available at: https://doi.org/10.1016/j.agwat.2014.05.008.
  • Steduto, P. et al. (2009) “AquaCrop – the FAO crop model to simulate yield response to water: I. Concepts and underlying principles Pasquale”, Agronomy Journal, 101(3), pp. 426–437. Available at: https://doi.org/10.2134/agronj2008.0139s.
  • Tapan, B.P. and Stoddard, C.S. (2018) “Climate change effects on the processing tomato growing season in California using growing degree day model,” Modeling Earth Systems and Environment, 4, pp. 765–775. Available at: https://doi.org/10.1007/s40808-018-0460-y.
  • Taylor, K.E., Stouffer, R.J. and Meehl, G.A. (2012) “An overview of CMIP5 and the experiment design,” Bulletin of the American Meteorological Society, 93, pp. 485–498. Available at: https://doi.org/10.1175/BAMS-D-11-00094.1.
  • Ventrella, D. et al. (2012) “Agronomic adaptation strategies under climate change for winter durum wheat and tomato in southern Italy: Irrigation and nitrogen fertilization,” Regional Environmental Change, 12, pp. 407–419. Available at: https://doi.org/10.1007/s10113-011-0256-3.
  • Wang, F. et al. (2011) “Determination of comprehensive quality index for tomato and its response to different irrigation treatments,” Agricultural Water Management, 98(8), pp. 1228–1238. Available at: https://doi.org/10.1016/j.agwat.2011.03.004.
  • Zhou, R. et al. (2017) “Drought stress had a predominant effect overheat stress on three tomato cultivars subjected to combined stress,” BMC Plant Biology, 17(1), 24. Available at: https://doi.org/10.1186/s12870-017-0974-x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-243a8909-81d0-42b8-a162-974f94fc7621
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.