PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Motion planning for mobile surgery assistant

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents a method of motion planning for a mobile manipulator acting as a helper providing the necessary tools or a surgery assistant carrying out pre-planned procedures. Mobility of this system makes it possible to reach the position which will give optimal access to the operating field. The path of the end-effector, determined during operation pre-planning, is defined as a curve parameterized by any scaling parameter, the reference trajectory of a mobile platform is not needed. The motion of the mobile manipulator is planned in order to maximise the manipulability measure, thus to avoid manipulator singularities. The method is based on a penalty function approach and a redundancy resolution at the acceleration level. Constraints connected with the existence of mechanical limits for a given manipulator configuration, collision avoidance conditions and control constraints are considered. A computer example involving a mobile manipulator consisting of a nonholonomic platform (2,0) class and a 3 DOF RPR type holonomic manipulator operating in a three-dimensional task space is also presented.
Rocznik
Strony
11--20
Opis fizyczny
Bibliogr. 27 poz., wykr.
Twórcy
autor
  • Faculty of Mechanical Engineering, University of Zielona Góra, Poland
autor
  • Faculty of Mechanical Engineering, University of Zielona Góra, Poland
Bibliografia
  • [1] BAYLE B., FOURQUET J.Y., RENAUD M., Manipulability of Wheeled Mobile Manipulators: Application to Motion Generation, Int. Journal of Rob. Res., 2003, 22(7–8), 565–581.
  • [2] CHUNG J., VELINSKY S., HESS R., Interaction control of a redundant mobile manipulator, Int. J. Rob. Res., 1998, 17(12), 1302–1309.
  • [3] DESAI J., KUMAR V., Nonholonomic motion planning for multiple mobile manipulators, Proc. of the IEEE Int. Conf. on Rob. and Autom., 1997, 4, 3409–3414.
  • [4] EGERSTEDT M., XU H., Coordinated trajectory following for mobile manipulation, Proc. of the IEEE Int. Conf. on Rob. and Autom., 2000, 3479–3484.
  • [5] FIACCO A.V., MCCORMICK G.P., Nonlinear Programming: Sequential Unconstrained Minimization Techniques, John Wiley & Sons, New York, 1968.
  • [6] GALICKI M., Optimal planning of collision-free trajectory of redundant manipulators, The International Journal of Robotics Research, 1992, 11(6), 549–559.
  • [7] GALICKI M., The planning of robotic optimal motions in the presence of obstacles, Int. Journal of Rob. Res., 1998, 17(3), 248–259.
  • [8] GALICKI M., Task space control of mobile manipulators, Robotica, 2011, 29, 221–232.
  • [9] GALICKI M., Collision-free control of mobile manipulators in a task space, Mech. Syst. Sig. Proc., 2011, 25(7), 2766–2784.
  • [10] LARYSZ D., WOLAŃSKI W., KAWLEWSKA E., MANDERA M., GZIK M., Biomechanical aspects of preoperative planning of skull correction in children with craniosynostosis, Acta Bioeng. Biomech., 2012, 14(2), 19–26.
  • [11] LIU K., LEWIS F. L., Control of mobile robot with onboard manipulator, Proc. of the Int. Symp. on Rob. and Manuf., 1992, 4, 539–546.
  • [12] MAZUR A., Path following for nonholonomic mobile manipulators, Rob. Motion and Control, LNCIS 360, 2007, 279–292.
  • [13] MAZUR A., Trajectory tracking control in workspace-defined tasks for nonholonomic mobile manipulators, Robotica, 2010, 28, 57–68.
  • [14] MORECKI A., Manipulatory bioniczne, PWN, Warszawa, 1976.
  • [15] NAWRAT Z., Medical robotics 2007 – trends & short review, Medical Robots, 2007, 1, 13–27.
  • [16] PAJAK G., GALICKI M., Collision-free trajectory planning of the redundant manipulators, Proc. of the Methods and Models in Automation and Robotics, 2000, 2, 605–610.
  • [17] PAJAK G., PAJAK I., Planning of an optimal collision-free trajectory subject to control constraints, Proc. of the 2nd International Workshop on Robot Motion and Control, 2001, 141–146.
  • [18] PAJAK G., PAJAK I., Sub-optimal trajectory planning of the redundant manipulators, International Journal of Applied Mechanics and Engineering, 2009, 14(1), 251–260.
  • [19] PAJAK G., PAJAK I., Sub-optimal trajectory planning for mobile manipulators, Robotica, 2014, DOI: 10.1017/ S0263574714000198.
  • [20] PAJAK G., PAJAK I., GALICKI M., Trajectory planning of multiple manipulators, Proc. of the 4th International Workshop on Robot Motion and Control, 2004, 121–126.
  • [21] PAJAK I., GALICKI M., The planning of suboptimal collisionfree robotic motions, Proc. of the 1st International Workshop on Robot Motion and Control, 1999, 229–243.
  • [22] STOCCO L., Path verification for unstructured environments, ASME Design Conf., Symp. Mechan. Devices Medical Applic., Pittsburgh, PA, 2001, 1103–1108.
  • [23] SUNG G.T., GILL I.S., Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems, Urology, 2001, 58(6), 893–898.
  • [24] WOŁCZOWSKI R., BĘDZIŃSKI R., Construction and control of human hand bio-prosthesis, VII National Conference on Robotics, 2001, 2, 247–258.
  • [25] YAMAMOTO Y., YUN X., Effect of the Dynamic Interaction on Coordinated Control of Mobile Manipulators, IEEE Trans. on Rob. and Autom., 1996, 12(5), 816–824.
  • [26] YOSHIKAWA T., Manipulability of Robotic Mechanisms, Int. Journal of Rob. Res., 1985, 4(2), 3–9.
  • [27] ZANETTI E.M., BIGNARDI C., Mock-up in hip arthroplasty pre-operative planning, Acta Bioeng. Biomech., 2013, 15(3), 123–128.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-243a82fa-b279-445a-abb2-0ecc1d9d5fc6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.