PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optoelectronic System Registering the Shape of Cavitation Cloud

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cavitation is one of the most interesting phenomena in area of fluid flow research. It can be observed in many different hydraulic systems and its effects can be very serious. Basic problem with cavitation is its observation. The main aim of the paper is to propose and evaluate the simple method allowing registration of the cavitation cloud shape, which will be financially and computationally undemanding. Therefore, the article presents the system registering the shape of cavitation cloud. It is based on the optoelectronic devices, i.e. lasers and photoresistors, as well as on the assumption that cavitation leads to diffusion of lasers light on the vapor bubbles. The experiment was performed for three cavitation inducers and two flow velocities. Obtained results shows that the shape of cavitation cloud is dependent on the inducer, but not on flow velocity. It can be concluded that the described optoelectronic system can be regarded as an inexpensive alternative to traditional methods of cavitation observation.
Wydawca
Rocznik
Strony
238--240
Opis fizyczny
Bibliogr. 18 poz., fot., rys., wykr.
Twórcy
autor
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St., 10-736 Olsztyn, Poland
  • Faculty of Technical Sciences, University of Warmia and Mazury in Olsztyn, 11 Oczapowskiego St., 10-736 Olsztyn, Poland
Bibliografia
  • [1] Dular M.: Hydrodynamic cavitation damage in water at elevated temperatures. Wear, vols. 346-347, pp. 78-86, 2016.
  • [2] Karimi A. and Martin J. L.: Cavitation erosion of materials. International Metals Reviews, vol. 31(1), pp. 1-26, 1986.
  • [3] Mitelea I., Oancă O., Bordeaşu I. and Crăciunescu C.M.: Cavitation Erosion of Cermet-Coated Aluminium Bronzes. Materials, vol. 9(3), p.11, 2016.
  • [4] Pavlović M., Dojčinović M., Martinović S., Vlahović M., Stević Z. and Volkov Husović T.: Non destructive monitoring of cavitation erosion of cordierite based coatings. Composites Part B: Engineering, vol. 97, pp. 84-91, 2016.
  • [5] Pędzich Z., Jasionowski R. and Ziąbka M.: Cavitation wear of structural oxide ceramics and selected composite materials. Journal of the European Ceramic Society, vol. 34(14), pp. 3351-3356, 2014.
  • [6] Brennen C. E.: Cavitation and Bubble Dynamics. Cambridge University Press, 2013.
  • [7] Caupin F. and Herbert E.: Cavitation in water: a review. Comptes Rendus Physique, vol. 7(9–10), pp. 1000-1017, 2006.
  • [8] Crum. L. A.: Nucleation and stabilization of microbubbles in liquids. Applied Scientific Research, vol. 38, pp. 101-115, 1982.
  • [9] Kinjo T. and Matsumoto M.: Cavitation processes and negative pressure. Fluid Phase Equilibria, vol. 144(1–2), pp. 343–350, 1998.
  • [10] Plesset, M. S. and Prosperetti A.: Bubble Dynamics and Cavitation. Annual Review of Fluid Mechanics, vol. 9, pp. 145-185, 1977.
  • [11] Hepher M. J., Duckett D. and Loening A.: High-speed video microscopy and computer enhanced imagery in the pursuit of bubble dynamics. Ultrasonics Sonochemistry, vol. 7(4), 229-233, 2000.
  • [12] Lauterborn W. and Ohl C. D.: Cavitation bubble dynamics. Ultrasonics Sonochemistry, vol. 4(2), pp. 65-75, 1997.
  • [13] Sun D. C., Brewe D. E. and Abel P. B.: Simultaneous pressure measurement and high-speed photography study of cavitation in a dynamically loaded journal bearing. Journal of Tribology, vol. 115(1), pp. 88-95, 1993.
  • [14] Lauterborn W.: Cavitation bubble dynamics - new tools for an intricate problem. Applied Scientific Research, vol. 38, pp. 165-178, 1982.
  • [15] Lebrun D., Allano D., Méès L., Walle F., Corbin F., Boucheron R. and Fréchou D.: Size measurement of bubbles in a cavitation tunnel by digital in-line holography. Applied Optics, vol. 50(34), H1-H9, 2011.
  • [16] Kravtsova A. Y., Markovich D. M., Pervunin K. S., Timoshevskiy M.V. and Hanjalić K.: High-speed visualization and PIV measurements of cavitating flows around a semi-circular leading-edge flat plate and NACA0015 hydrofoil. International Journal of Multiphase Flow, vol. 60, pp. 119-134, 2014.
  • [17] Harada K., Murakami M. and Ishii T.: PIV measurements for flow pattern and void fraction in cavitating flows of He II and He I. Cryogenics, vol. 46(9), pp. 648-657, 2006.
  • [18] Niedźwiedzka A. and Sobieski W.: Experimental investigations of cavitating flows in a Venturi tube. Technical Sciences, vol. 19(2), 2016.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-243a5f79-324f-461d-8ed3-cf9671656c0b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.