PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new method for estimating fault location in radial medium voltage distribution network only using measurements at feeder beginning

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper proposes a new fault location method in radial medium voltage distribution networks. The proposed method only uses the measurement data at the feeder beginning to approximate the characteristic equation showing the dependence between the positive-sequence voltage and phase angle at the monitoring point with the distance to the fault location for each fault type on each line segment. To determine these characteristic equation coefficients, the entire distribution network will be modeled and simulated by four types of faults at different locations along the lines to build the initial database. Based on this database, the mathematical functions in MATLAB software are applied to approximate these coefficients corresponding to each type of fault for each line segment in the network. Then, from the current and voltage measurement data at the feeder beginning, the algorithms of global search, comparison, and fault ranking are used to find out where the fault occurs on the distribution network. Two types of distribution network with and without branches are studied and simulated in this paper to verify and evaluate the effectiveness of the proposed method.
Rocznik
Strony
503--520
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wz.
Twórcy
  • Department of I.T., FPT University – Quy Nhon A.I Campus Dong Da ward, Quy Nhon city, Viet Nam
Bibliografia
  • [1] Mokryani G., Future Distribution Networks: Planning, Operation, and Control, AIP Publishing (2022), DOI: 10.1063/9780735422339.
  • [2] Kezunovic M., Smart Fault Location for Smart Grids, IEEE Transactions on Smart Grid, vol. 2, no. 1, pp. 11–22 (2011), DOI: 10.1109/TSG.2011.2118774.
  • [3] Lampley G. C., Fault analysis on electrical distribution system, in IEEE Rural Electric Power Confer- ence, Charleston, SC, USA (2008), DOI: 10.1109/REPCON.2008.4520142.
  • [4] Liang J., Jing T., Niu H., Wang J., Two-Terminal Fault Location Method of Distribution Network Based on Adaptive Convolution Neural Network, IEEE Access, vol. 8, pp. 54035–54043 (2020), DOI: 10.1109/ACCESS.2020.2980573.
  • [5] Liu L., Faulted feeder identification and location for a single line-to-ground fault in ungrounded distribution system based on principal frequency component, Archives of Electrical Engineering, vol. 69, no. 3, pp. 695–704 (2020), DOI: 10.24425/aee.2020.133926.
  • [6] Menchafou Y., Zahri M., Habibi M., Markhi H. E., Optimal load distribution estimation for fault location in electric power distribution systems, Archives of Electrical Engineering, vol. 66, no. 1, pp. 77–87 (2017), DOI: 10.1515/aee-2017-0006.
  • [7] Saha M. M., Izykowski J. J., Rosolowski E., Fault Location on Power Networks, Springer Science and Business Media (2009), DOI: 10.1007/978-1-84882-886-5.
  • [8] Salim R. H., Resener M., Filomena A. D., Oliveira K. R. C., Bretas A. S., Extended Fault-Location Formulation for Power Distribution Systems, IEEE Transactions on Power Delivery, vol. 24, no. 2, pp. 508–516 (2009), DOI: 10.1109/TPWRD.2008.2002977.
  • [9] Zhang Y., Bi A., Wang J., Zhang F., Lu J., VSC-HVDC transmission line fault location based on transient characteristics, vol. 70, no. 2, pp. 381–398 (2021), DOI: 10.24425/aee.2021.136991.
  • [10] Khoa N. M., Cuong M. V., Cuong H. Q., Hieu N. T. T., Performance Comparison of Impedance-Based Fault Location Methods for Transmission Line, International Journal of Electrical and Electronic Engineering and Telecommunications, vol. 11, no. 3, pp. 234–241 (2022), DOI: 10.18178/ijeetc.11.3.234-241.
  • [11] Shi S., Zhu B., Lei A., Dong X., Fault Location for Radial Distribution Network via Topology and Reclosure-Generating Traveling Waves, IEEE Transactions on Smart Grid, vol. 10, no. 6, pp. 6404–6413 (2019), DOI: 10.1109/TSG.2019.2904210.
  • [12] Salim R.H., Salim K.C.O., Bretas A.S., Further improvements on impedance-based fault location for power distribution systems, IET Generation, Transmission and Distribution, vol. 5, no. 4, pp. 467–478 (2011), DOI: 10.1049/iet-gtd.2010.0446.
  • [13] Mirshekali H., Dashti R., Keshavarz A., Torabi A.J., Shaker H.R., A Novel Fault Location Methodology for Smart Distribution Networks, IEEE Transactions on Smart Grid, vol. 12, no. 2, pp. 1277–1288 (2021), DOI: 10.1109/TSG.2020.3031400.
  • [14] Ye L., You D., Yin X., Wang K., Wu J., An improved fault-location method for distribution system using wavelets and support vector regression, International Journal of Electrical Power and Energy Systems, vol. 55, pp. 467–472 (2014), DOI: 10.1016/j.ijepes.2013.09.027.
  • [15] Pang Q., Ye L., Gao H., Li X., Wang Y., Cao T., Multi-Timescale-Based Fault Section Location in Distribution Networks, IEEE Access, vol. 9, pp. 148698–148709 (2021), DOI: 10.1109/AC-CESS.2021.3123180.
  • [16] Stefanidou-Voziki P., Sapountzoglou N., Raison B., Dominguez-Garcia J.L., A review of fault location and classification methods in distribution grids, Electric Power Systems Research, vol. 209, p. 108031 (2022), DOI: 10.1016/j.epsr.2022.108031.
  • [17] Apostolopoulos C. A., Arsoniadis C. G., Georgilakis P. S., Nikolaidis V. C., Fault location algorithms for active distribution systems utilizing two-point synchronized or unsynchronized measurements, Sustainable Energy, Grids and Networks, vol. 32, p. 100798 (2022), DOI: 10.1016/j.segan.2022.100798.
  • [18] Ren J., Venkata S. S., Sortomme E., An Accurate Synchrophasor Based Fault Location Method for Emerging Distribution Systems, IEEE Transactions on Power Delivery, vol. 29, no. 1, pp. 297–298 (2014), DOI: 10.1109/TPWRD.2013.2288006.
  • [19] Aboshady F. M., Thomas D. W. P., Sumner M., A new single end wideband impedance based fault location scheme for distribution systems, Electric Power Systems Research, vol. 173, pp. 263–270 (2019), DOI: 10.1016/j.epsr.2019.04.034.
  • [20] Dashtdar M., Bajaj M., Hosseinimoghadam S. M. S., Mérshêkáér H., Fault location in distribution network by solving the optimization problem using genetic algorithm based on the calculating voltage changes, Soft Computing, vol. 26, pp. 8757–8783 (2022), DOI: 10.1007/s00500-022-07203-8.
  • [21] Ghaemi A., Safari A., Afsharirad H., Shayeghi H., Accuracy enhance of fault classification and location in a smart distribution network based on stacked ensemble learning, Electric Power Systems Research, vol. 205, p. 107766 (2022), DOI: 10.1016/j.epsr.2021.107766.
  • [22] Goudarzi M., Vahidi B., Naghizadeh R. A., Hosseinian S. H., Improved fault location algorithm for radial distribution systems with discrete and continuous wavelet analysis, International Journal of Electrical Power and Energy Systems, vol. 67, pp. 423–430 (2015), DOI: 10.1016/j.ijepes.2014.12.014.
  • [23] Hosseinimoghadam S. M. S., Dashtdar M., Dashtdar M., Fault Location in Distribution Networks with the Presence of Distributed Generation Units Based on the Impedance Matrix, Journal of the Institution of Engineers (India): Series B, vol. 102, pp. 227–236 (2021), DOI: 10.1007/s40031-020-00520-2.
  • [24] Silos-Sanchez A., Villafafila-Robles R., Lloret-Gallego P., Novel fault location algorithm for meshed distribution networks with DERs, Electric Power Systems Research, vol. 181, p. 106182 (2020), DOI: 10.1016/j.epsr.2019.106182.
  • [25] Jia K., Bi T., Ren Z., Thomas D.W.P., High Frequency Impedance Based Fault Location in Distribution System with DGs, IEEE Transactions on Smart Grid, vol. 9, no. 2, pp. 807–816 (2018), DOI: 10.1109/TSG.2016.2566673.
  • [26] Jamali S., Bahmanyar A., Bompard E., Fault location method for distribution networks using smart meters, Measurement, vol. 102, pp. 150–157 (2017), DOI: 10.1016/j.measurement.2017.02.008.
  • [27] Majidi M., Etezadi-Amoli M., A New Fault Location Technique in Smart Distribution Networks Using Synchronized/Nonsynchronized Measurements, IEEE Transactions on Power Delivery, vol. 33, no. 3, pp. 1358–1368 (2018), DOI: 10.1109/TPWRD.2017.2787131.
  • [28] Khoa N. M., Tung D. D., Locating Fault on Transmission Line with Static Var Compensator Based on Phasor Measurement Unit, Energies, vol. 11, no. 9, p. 2380 (2018), DOI: 10.3390/en11092380.
  • [29] Rui L., Nan P., Zhi Y., Zare F., A novel single-phase-to-earth fault location method for distribution network based on zero-sequence components distribution characteristics, International Journal of Electrical Power and Energy Systems, vol. 102, pp. 11–22 (2018), DOI: 10.1016/j.ijepes.2018.04.015.
  • [30] Sadeh J., Bakhshizadeh E., Kazemzadeh R., A new fault location algorithm for radial distribution systems using modal analysis, International Journal of Electrical Power and Energy Systems, vol. 45, no. 1, pp. 271–278 (2013), DOI: 10.1016/j.ijepes.2012.08.053.
  • [31] Khoa N.M., Tung D.D., Design and Implementation of Real-time Fault Location Experimental System for Teaching and Training University Students, International Journal of Electrical and Computer Engineering Systems, vol. 14, no. 1, pp. 109–118 (2023), DOI: 10.32985/ijeces.14.1.12.
  • [32] Lopes F. V., Leite E. J. S. Jr., Ribeiro J. P. G., Piardi A. B., Scheid A.V., Zat G., Espinoza R. G., Singleended multi-method phasor-based approach for optimized fault location on transmission lines, Electric Power Systems Research, vol. 212, p. 108367 (2022), DOI: 10.1016/j.epsr.2022.108361.
  • [33] Horowitz S., Phadke A., Power system relaying, Tauton (USA): Research Studies Press (1995).
  • [34] Chen B., Yu N., Chen B., Tian C., Chen Y., Chen G., Fault Location for Underground Cables in Ungrounded MV Distribution Networks Based on ZSC Signal Injection, IEEE Transactions on Power Delivery, vol. 36, no. 5, pp. 29652977 (2021), DOI: 10.1109/TPWRD.2020.3031277.
  • [35] Khoa N. M., Hieu N. H., Viet D. T., A Study of SVC’s Impact Simulation and Analysis for Distance Protection Relay on Transmission Lines, International Journal of Electrical and Computer Engineering, vol. 7, no. 4, pp. 1686–1695 (2017), DOI: 10.11591/ijece.v7i4.pp1686-1695.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-243883eb-1d49-480a-959a-b1d8e25ef266
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.