
Journal of Applied Mathematics and Computational Mechanics 2020, 19(4), 45-56 

www.amcm.pcz.pl p-ISSN 2299-9965 

 DOI: 10.17512/jamcm.2020.4.04 e-ISSN 2353-0588 

THE FINITE DIFFERENCE METHOD ON ADAPTIVE MESH  

FOR SINGULARLY PERTURBED NONLINEAR 1D REACTION 

DIFFUSION BOUNDARY VALUE PROBLEMS 

Hakkı Duru, Baransel Güneş 

Department of Mathematics, Van Yuzuncu Yil University  

 Van, Turkey 

hakkiduru@gmail.com, baranselgunes23@gmail.com 

 

Received: 10 June 2020; Accepted: 12 November 2020 

Abstract. In this paper, we study singularly perturbed nonlinear reaction-diffusion equa-

tions. The asymptotic behavior of the solution is examined. The difference scheme which is 

accomplished by the method of integral identities with using of interpolation quadrature 

rules with weight functions and remainder term integral form is established on adaptive 

mesh. Uniform convergence and stability of the difference method are discussed in the dis-

crete maximum norm. The discrete scheme shows that orders of convergent rates are close 

to 2. An algorithm is presented, and some problems are solved to validate the theoretical  

results. 
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1. Introduction  

This study is concerned with following the singularly perturbed boundary  

value problem in which a second-order derivative is multiplied by a small positive 

parameter �� 

 −����� + ��	
��	
 = ��	, �
;    0 ≤ 	 ≤ �,  (1) 

 ��0
 = ��, ���
 = ��, (2) 

where 0 < � ≪ 1 is the perturbation parameter, �� and �� are given constants. ��	
 and ��	, �
 ��	, �
 ∈ �0, �� × ℝ
 are given sufficiently smooth functions. 

Moreover ���� ≥    > 0 in �0, �� × ℝ.  

Reaction-diffusion equations are typical mathematical models in many areas  

of science and engineering. Nuclear reactivity, population dynamics, biological 



H. Duru, B. Güneş 46 

systems, a control theory, fluid dynamics, chemical processes and finance are 

among these [1-4]. For example, travelling waves of chemical concentration were 

dealt with by fractional reaction-diffusion equations [5]. Furthermore, the follow-

ing equation has been presented for models of the spread of invasive species 

���	, %
�% = & ����	, %
��% + �'��	, %
(, 
where ��	, %
 is the population density and 	 ∈ ℝ [4]. Another sample has been  

introduced for blow-up profiles  

�) = ∆� + +,,   	 ∈ Ω,   t > 0,  
��	, 0
 = ���	
 ≥ 0, 

where |	| < 0 and �� is non-negative [6]. 

Different forms of reaction-diffusion equations have been located in literature. 

Some authors have taken interest in numerical solutions of these equations. There-

fore, there are many different types of numerical approaches that have been pre-

sented. The implicit Runge-Kutta method was used for time-dependent reaction-

diffusion equations [7]. The explicit Euler discretized is considered for nonlinear 

form [3]. The implicit Galerkin-Legendre spectral method is applied to the two  

dimensional fractional form [2]. We see the singularly perturbed form of these 

equations in recent studies. Standard and stabilised finite difference methods are 

carried out on a Shishkin mesh for semilinear singularly perturbed reaction-

diffusion boundary value problems [8]. By using the method of two-steps expan-

sions, nonlocal equations are studied [9]. Anisotropic nonconforming finite ele-

ment methods are considered with the interpolation postprocessing technique [10]. 

Considering the Richardson technique, an improved scheme is constructed [11]. 

The Richardson extrapolation method with the fourth-order stable central differ-

ence method were carried out for the self-adjoint type of these equations [12].  

Using the compact finite difference method, error bounds are obtained for 1D 

forms [13]. The standard implicit Euler method and the HODIE compact fourth  

order finite difference scheme were used [14]. Sobolev gradient methods were used 

with Dirichlet boundary conditions [15]. By taking into account the finite element 

method, sign-changing solutions are obtained [16]. The Hybrid finite difference 

scheme and Numerov scheme are established on a Shishkin type mesh [17]. By 

carrying out boundary layer analysis, numerical solutions are obtained in a quasi- 

-uniform mesh [18]. The finite difference scheme is constructed for one and two 

dimensional types [19]. By using asymptotic behavior of the solution, a domain  

decomposition method is analyzed into three overlapping subdomains [20].  

Besides, for delay form of these equations, a fitted finite difference scheme is con-

structed by using the Numerov’s method [1] and a difference scheme is established 

on a piecewise equadistant mesh [21]. 
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Singularly perturbed problems have boundary layers in which the solution 

changes quickly. In such problems, when � → 0, the boundary layer is getting  

thinner. Algorithms which are established by traditional numerical techniques  

are unstable. That’s why we need the reliable numerical methods. 

Our goal in this paper is to present the robust numerical method for singularly 

perturbed reaction-diffusion equations on adaptive mesh. 

The draft of this research is as follows: In section 2, the properties of the solu-

tion for (1)-(2) are handled. In section 3, the difference scheme is constructed  

on adaptive mesh. In section 4, error approximations are obtained with respect to 

Bakhvalov mesh transition points. In section 5, the theoretical results are tested  

on some numerical examples. 

2. Continuous problem  

In this section, we give the asymptotic behavior of the solution and its deriva-

tives, which is required in analysis of the numerical method. For the (1)-(2) non- 

linear problem, using the Taylor expansion, we can write 

��	, �
 = ��	, 0
 + ���	, �2
�� �, 
where �2 = 3�, 0 < 3 < 1. Also we get 4�	
 = ��	, 0
 and 5�	
 = 67�8,,9
6, . Then 

−����� + ���	
 − 5�	
�� = 4�	
. 
If we get :�	
 = ��	
 − 5�	
, we obtain 

 −����� + :�	
� = 4�	
, (3) 

where 

:�	
 = ��	
 − ���	, �2
�� ≥ ; > 0, (4) 

4�	
 = ��	, 0
 ≥ 0. 
We give the following lemmas for the properties of the solution. 

Lemma 1. [22] Let <�	
 be a function and satisfy the following conditions: 

=< = 4�	
 ≥ 0, 
�� ≥ 0, �� ≥ 0. Then <�	
 ≥ 0. 

Lemma 2. [22] For a <�	
 ∈ ∁�0, �� ∩ ∁��0, �
 function, the following estimate  

is held: 

 |<�	
| ≤ |<�0
| + |<��
| + ;@� A�	0 ≤ B ≤ �|=<�B
|, 0 ≤ 	 ≤ �, (5) 
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Lemma 3. For the solution of the (1)-(2) nonlinear problem, the following estima-

tions are true: 

 |��	
| ≤ C, 0 < 	 < �; :�	
, 4�	
 ∈ ∁�0, ��, (6) 

|���	
| ≤ C D1 + 1� E+@√G8H + +@√G�I@8
H JK , 0 < 	 < �, :�	
, 4�	
 ∈ ∁�0, ��, (7) 

Proof. The proof of the lemma is done in a similar manner [22]. 

3. Discretization  

In this section, we proceed to construct the difference scheme. Let LM be any 

non-uniform mesh on �0, ��. 
LM = {0 = 	₁ < 	₂ <. . . < 	M@� < 	M = �}, 

and LM = RM ∪ {	� = 0,  	M = � }. 
Before constructing the difference scheme, we define some notation for the mesh 

functions. For any mesh function we defined on LM:  

<T = <�	T
, <8,T = <TU� − <TℎTU� , <8W,T = <T − <T@�ℎT , ℎT = 	T − 	T@�, 
<8̅8,T = �ℏZ '<8,T − <8W,T( with ℏT = �� �ℎT + ℎTU�
. Node points 	T are specified as 

	T =

⎩⎪
⎪⎪
⎪⎪
⎨
⎪⎪
⎪⎪
⎪⎧ −;@�� ln `1 − �1 − �
 4bcd ,   b = 0,1, … , c4 ,   	T ∈ �0, f₁�,   f₁ < �4 ;

−;@�� ln `1 − `1 − +@GIgHd 4bcd ,   b = 0,1, … , c4 ,   	T ∈ �0, f₁�,   f₁ = �4 ;
f₁ + `b − c4d ℎ��
,   b = c4 + 1, … , 3c4 ,   	T ∈ �f₁, f₂�,   ℎ��
 = 2�f₂ − f₁
c  ;
f₂ − ;@�� ln j1 − �1 − �
 4 kb − 3c4 lc m ,  b = 3c4 + 1, … , c,  	T ∈ �f₂, �� ;

f₂ − ;@�� ln j1 − `1 − +@GIgHd 4 kb − 3c4 lc m , b = 3c4 + 1, … , c,  	T ∈ �f₂, ��, f₂ = 3�4  ,

n 

To generate the difference method, we begin following integral identity [23] 

ℏT@� o '−����� + ��	
��	
(pTq	8Zrs
8Zts = ℏT@� o ��	, �
pTq	8Zrs

8Zts , (8) 
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where 

pT =
⎩⎪⎨
⎪⎧pT��
 = �	 − 	T@�
ℎT ,  	 ∈ �	T@�, 	T
,

pT��
 = �	TU� − 	
ℎTU� , 	 ∈ �	T, 	TU�
, n 
and 

ℏT@� o pTq	8Zrs
8Zts = ℏT@� `ℎT2 + ℎTU�2 d = 1. 

By using interpolating quadrature rules in [24] for each term of (8), we obtain  

the following difference problem 

 −���8W8,T + �T�T = ��	T, �T
 + 0T, b = 1, … , c − 1, (9) 

 �� = ��,  �M = ��,  (10) 

where 

 0T = 0T��
 + 0T��
, (11) 

0T��
 = ℏT@� o q	pT8Zrs
8Zts o q���u
qu�

8Zrs
8Zts v��	 − u
qu, 

0T��
 = −ℏT@� o ���	
 − ��	T
���	
pTq	8Zrs
8Zts  

+ℏT@� Do ���	, �
 − ��	T , �
�pTq	 + o ���	T, �
 − ��	T , �T
�pTq	8Zrs
8Zts

8Zrs
8Zts  K. 

Hence, we can write the difference problem for the approximate solution w 

 −��w8W8,T + �TwT = ��	T, wT
,   b = 1, … , c − 1, (12) 

 w� = wM = 0. (13) 

4. Error estimates 

To investigate the uniform convergence of the difference method, let �T  
be the solution (9)-(10) and wT be the solution of (12)-(13). The approximate error xT = wT − �T, 	T ∈ RM is the solution of following problem  

��x8W8,T − �TxT = ��	T , wT
 − ��	T, �T
,   b = 1, … , c − 1, x� = xM = 0. 
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By modifying ��	T, wT
 − ��	T, �T
, we can write 

 �xT = − ��x8W8,T + :TxT = 0T, b = 1, c − 1, x� = xM = 0, (14) 

where :T is denoted in (3) and 0T  is given by (11). 

Theorem 1. The solution of the difference problem (12)-(13) is uniformly conver-

gent to the solution of the problem (1)-(2) with respect to � in RM under condition :�	
 ∈ ∁��0, ��. The following estimate is held 

‖w − �‖∁� z{
 ≤ CℎT. 
Proof. For the difference operator �<T, if �<T ≥ 0 �b = 1,2, … , c − 1
, <� ≥ 0, <M ≥ 0, we can show <T ≥ 0, b = 0,1, … , c from the maximum principle. If 

Lemma 2 is applied to the problem (14), the following estimation can be written 

 ‖x‖∁� z{
 ≤∝@� ‖0‖∁� z{
. (15) 

For 0T, under the condition :�	
 ∈ ∁��0, �� 
 |0T| ≤ CℎT, b = 1,2, … , c − 1. (16) 

Hence,  

|0T| ≤ �TℏT@� o q	pT8Zrs
8Zts o ~q��u
q	 ~8Zrs

8Zts v��	 − u
qu 

 

+ℏT@� o |��	
 − ��	T
|. |��	
|pTq	8Zrs
8Zts  

 +ℏT@� Do |��	, �
 − ��	T , �
|pTq	8Zrs
8Zts + o |��	T , �
 − ��	T , ��	T

|pTq	8Zrs

8Zts K. 
To show (16), it is enough to show that the convergence rate of the following  

expression is ��ℎT
  

ℏT@� o |��	T, �
 − ��	T , ��	T

|pTq	8Zrs
8Zts . 

By using the mean value theorem, the condition �67�8Z,,9
6, � ≤ C and   

|���	
| ≤ C D1 + 1� E+@√G8H + +@√G�I@8
H  JK, 
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we can write 

ℏT@� o |��	T , �
 − ��	T , ��	T

|pTq	 =8Zrs
8Zts ℏT@� o ����	T, �2
�� � |��	
 − ��	T
|pTq	8Zrs

8Zts , 
 

≤ CℏT@� o q	pT8Zrs
8Zts o ~q��u
q	 ~8Zrs

8Zts qu, 
  ≤ C o D1 + 1� E+@√G�H + +@√G�I@�
H  JK8Z

8Zts qu, 
 ≤ C DℎT + '√;(@� �+@√G8ZtsH − +@√G8ZH − +@√G�I@8Z
H + +@√G�I@8Zts
H �K. 

We estimate separately 0T in �0, f₁�, �f₁, f₂� and �f₂, ��. First, in �0, f₁�, for f₁ < �g  

ℎT = 	T − 	T@� = ;@�� �− ln `1 − `1 − +@GIgHd 4bcd + ln E1 − `1 − +@GIgHd 4�b − 1
c J�, 
 ≤ 4;@��1 − �
c@�. 

Besides +t√��Zts� − +t√��Z� ≤ 4;@��1 − �
c@� is obtained. Similarly, +t√�'�t�Zts(� −+t√�'�t�Z(� ≤ 4;@��1 − �
c@� is found. If f₁ = �g, 

ℎT = 	T − 	T@� = ;@�� �− ln `1 − `1 − +@GIgHd 4bcd + ln E1 − `1 − +@GIgHd 4�b − 1
c J�, 
 

≤ ;@� `1 − +@GIgHd c@� ≤ ;@�� ;�4� 4c@� = �c@�, 
is found. Thus it is proven |0T| ≤ Cc@� in �0, f₁�. For �f₁, f₂�, it is written 

ℎT = 	T − 	T@� = 2�f� − f�
c = 2�� − 2f�
c = 2��� − 2f�
c@�. 
ℎT ≤ �c@� for f₁ < �g. ℎT = �c@� is obtained for f₁ = �g. Therefore it is proven  

that |0T| ≤ Cc@�. Similarly, it is shown that |0T| ≤ Cc@� in �f₂, ��. The proof of 

the theorem is completed. 

We now consider the necessary conditions that the convergence rate is ��ℎ�
. 

We express that with a theorem. 

Theorem 2. If ��	
 ∈ ∁��0, ��, ��	, �
 ∈ ∁��&
 and  

���0
 = ����
 = 0, 



H. Duru, B. Güneş 52 

the convergence rate of difference scheme (12)-(13) is ��ℎ�
 and we can write  

as follows: ‖w − �‖∁�z{
 ≤ Cℎ�. 
Proof. The proof of the theorem is done in a similar manner [22]. 

5. Results and discussion 

In this section, we present the numerical outcomes for the difference scheme 

(12)-(13). Because of nonlinear terms, we suggest the Newton-Raphson technique 

for solving discretization. Applying this method, we get 

−��ℎ@��T'wTU���
 − 2wT��
 + wT@���
( + �TwT��
 − wT��
 ��'	T , wT��@�
(�� , 
= �'	T, wT��@�
( − wT��@�
 ��'	T, wT��@�
(�� . 

Then, the difference problem (9)-(10) is modified accorrding to the following form 

:TwT@� − CTwT + �TwTU� = −4T , b = 1, … , c − 1, w� = wM = 0, 

If the elimination method is considered, we obtain [25]  

:T = ��ℎT@�ℎT@�@�,   �T = ��ℎT@�ℎTU�@�, 
CT = 2�²�T�T + �T − ��'	T, wT��@�
(�� , 

4T = �'	T , wT��@�
( − wT��@�
 ��'	T, wT��@�
(�� , 
where the initial process is taken as wT��
 = −2,   b = 1, … , c − 1. Furthermore,  

the error estimates are denoted by  

+M = A�	b |wTM − �T�M|, 
and the convergence rates are calculated as follows 

 ,M = �� k+M +�M� l��2 . 
Example 1. We consider following the singularly perturbed nonlinear reaction- 

-diffusion equation with boundary conditions 
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−������	
 + 	�1 − 	
��	
 = � + ��;   	 ∈ �0,1
, ��0
 = ��1
 = 0. 
The computational results are presented in Table 1 for different values of � and c. 

Table 1. Error approximations and convergence rates for Example 1 

� c = 32 c = 64 c = 128 c = 256 

10@� 

+M 0.0799526742 0.014754788 0.0035099236 0.0008603976 +�M 0.0147547885 0.0034043440 0.0008603976 0.0002140310   2.4379630428 2.1157345182 2.0283641948 2.0071840245 

10@g 

+M 0.0828403312 0.0151691846 0.0035920895 0.0008799596 +�M 0.0151691846 0.0034750245 0.0008799596 0.0002188600   2.4491897825 2.1260484965 2.0293141627 2.0074289004 

10@� 

+M 0.0828699525 0.0151733736 0.0035929183 0.0008801565 +�M 0.0151733736 0.0034757402 0.0008801565 0.0002189086   2.4493072074 2.1261497204 2.0293240973 2.0074314626 

10@� 

+M 0.0828702685 0.0151734155 0.0035929266 0.0008801585 +�M 0.0151734155 0.0034757474 0.0008801585 0.0002189091   2.4493087244 2.1261507342 2.0293241968 2.0074314878 

10@�� 

+M 0.0828706110 0.0151735008 0.0035929284 0.0008801633 +�M 0.0151735008 0.0034757482 0.0008801633 0.0002189097   2.4493065792 2.1261585109 2.0293170202 2.0074355070 

10@�� 

+M 0.0828702899 0.0151734160 0.0035940285 0.0008804717 +�M 0.0151734160 0.0034765455 0.0008804717 0.0002189558   2.4493090554 2.1258195359 2.0292532872 2.0076370035 

 

Also, it is observed that the numerical solution of Example 1 has two boundary 

layers from Figure 1. 
 

 

Fig. 1. Numerical solution for � = 10@g and c = 64 
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Example 2. We take into account another singularly perturbed boundary value 

problem −������	
 + +8��	
 = Bb�� + �;   	 ∈ �0,1
, ��0
 = ��1
 = 0. 
The numerical outcomes are demonstrated in Table 2. 

Table 2. Error approximations and convergence rates for Example 2 

� c = 32 c = 64 c = 128 c = 256 

10@� 

+M 0.0560907495 0.0131986907 0.0032395318 0.0002013206 +�M 0.0131986907 0.0032395318 0.0008061984 0.0002013206   2.0873680382 2.0265376068 2.0065784439 2.0016403685 

10@g 

+M 0.0567253715 0.0133976816 0.0032893099 0.0008230667 +�M 0.0133976816 0.0032893099 0.0008186327 0.0002055001   2.0820107768 2.0261265381 2.0064966745 2.0018704650 

10@� 

+M 0.0567533914 0.0134026241 0.0032904792 0.0008234119 +�M 0.0134026241 0.0032904792 0.0008189231 0.0002055862   2.0821911117 2.0261458699 2.0064978773 2.0018706756 

10@� 

+M 0.0567571501 0.0134027487 0.0032904927 0.0008234155 +�M 0.0134027487 0.0032904927 0.0008189261 0.0002055871   2.0822732420 2.0261533604 2.0064984282 2.0018707102 

10@�� 

+M 0.0567592200 0.0134027915 0.0032904936 0.0008234155 +�M 0.0134027915 0.0032904936 0.0008189262 0.0002055871   2.0823212534 2.0261575862 2.0064987317 2.0018707282 

10@�� 

+M 0.0567605773 0.0134028187 0.0032904941 0.0008234155 +�M 0.0134028187 0.0032904941 0.0008189262 0.0002055871   2.0823528207 2.0261603120 2.0064989242 2.0018707401 

 

Figure 2 shows behavior of the numerical solution for Example 2. 
 

 

Fig. 2. Numerical solution for � = 10@� and c = 256 
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The exact solutions of the Examples 1-2 are unknown. To obtain the experimental 

rates of convergence, we compare the computed solution with the solution on  

a mesh that is twice as fine. The proposed scheme is useful and simple to solve 

such problems. Moreover, it is uniform and yields more accurate results than some 

existing ones presented in the literature. Furthermore, the presented scheme can be 

implemented by a combination with other techniques for higher dimensional forms 

of these problems. 

6. Conclusions 

In this article, the classical difference scheme was constructed on adaptive mesh 

for nonlinear reaction-diffusion equations with a perturbation parameter. By using 

asymptotic evaluations, the convergence analysis of the method was successfully 

investigated. In the algorithm, the Newton-Raphson method was used because of 

nonlinear terms. The theoretical outcomes were tested on samples. The computa-

tional results were illustrated in tables. Based on the numerical experiments,  

we observe that the orders of convergence are close to 2. Numerical research  

can be carried out for different types such as delay, parabolic, elliptic, higher  

dimensional, etc. 
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