PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wybrane strategie kapsułkowania polifenoli stosowane w celu poprawy ich stabilności

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Selected polyphenol encapsulation strategies to improve their stability
Języki publikacji
PL
Abstrakty
EN
Polyphenols are one of the most numerous and ubiquitous groups of secondary plant metabolites, and constitute an integral part of both human and animal diets. These compounds possess a high spectrum of biological activities, including antioxidant, antibacterial, antiviral, anti-inflammatory, neuroprotective and cardioprotective. A lot of preclinical research and epidemiological data suggests that plant polyphenols reduce the risks of neurodegenerative diseases, cardiovascular disease, osteoporosis or diabetes and can slow the progression of cancers. These facts sugest that plant polyphenols might act as potential chemopreventive and anti-cancer agents. However, the levels of polyphenols that appear effective in vitro are often of an order of magnitude higher than the concentrations determined in vivo. This is a serious problem, as only a small part of the substance remain available following oral administration, due to insufficient gastric residence time, low permeability and solubility within the gut. An important element is polyphenols instability under conditions encountered in food processing and storage (oxygen, temperature, light), or in the gastrointestinal tract (enzymes, pH, other nutrients), all of which limit the activity of polyphenolic compounds. Another unfortunate trait of polypheonls is their potential unpleasant taste. In order to overcome these drawbacks, various formulation methods have been developed. Among them, encapsulation seems to be a promising technique to improve the effectiveness and the bioactivity of polyphenols. Moreover, it protects the core material from environmental factors. Microcapsules are small particulates that may range from submicron to several millimeters in size. Encapsulation methods can be classified in three groups: physical, physico-chemical, and chemical. The research studies reported in this paper revealed useful strategies to provide remarkable protection against harmful factors of polyphenolic compounds, avoiding the loss in activity and improving their bioavailability.
Rocznik
Strony
981--996
Opis fizyczny
Bibliogr. 49 poz.
Twórcy
  • Zakład Chemii Nieorganicznej, Katedra Chemii, Uniwersytet Medyczny w Lublinie, ul. Chodźki 4a, 20-093 Lublin
  • Zakład Chemii Nieorganicznej, Katedra Chemii, Uniwersytet Medyczny w Lublinie, ul. Chodźki 4a, 20-093 Lublin
  • Zakład Chemii Nieorganicznej, Katedra Chemii, Uniwersytet Medyczny w Lublinie, ul. Chodźki 4a, 20-093 Lublin
Bibliografia
  • [1] M. Olszowy, Plant Physiol. Biochem. 2019,144, 135.
  • [2] A. Durazzo, M. Lucarini, E.B. Souto, C. Cicala, E. Caiazzo, A.A. Izzo, E. Novellino, A. Santini, Phytother. Res. 2019,33,2221.
  • [3] M. Murkovic, Encyclopedia of Food and Health, Academic Press, Oxford, 2016.
  • [4] W. Lu, A.L. Kelly, S. Miao, Trends Food Sci. Tech. 2016, 47, 1.
  • [5] Y. Shi, S. Zhou, S. Fan, Y. Ma, D. Li, Y. Tao, Curr. Opin. Food Sci. 2021, 38,102.
  • [6] A. Munin, F. Edwards-Lévy, Pharmaceutics 2011, 3,793.
  • [7] H. Cory, S. Passarelli, J. Szeto, M. Tamez, J. Mattei, [online] Front. Nutr. 2018, 5. https://doi.org/10.3389/fiiut.2018.00087.
  • [8] S.E. Bianchi, S. Kaiser, V. Pittol, E. Doneda, K.C.B. De Souza, V.L. Bassani, Phytochem. Anal. 2019,2,182.
  • [9] H. Khan, A. Sureda, T. Belwal, Çetinkaya, Í.; Süntar, S. Tejada, H.P. Devkota, H. Ullah, M. Aschner, Rev. 2019,18, 647.
  • [10] I. Ignat, I. Volf, V.I Popa, Food Chem. 2011, 4,1821.
  • [11] T. Blicharski, A. Oniszczuk, Open Chem. 2017,1,34.
  • [12] K. Kasprzak-Drozd, T. Oniszczuk, M. Stasiak, A. Oniszczuk, Int. J. Mol. Sci. 2021,22, 3715.
  • [13] M.C. Morzelle, J.M. Salgado, A.P. Massarioli, P. Bachiega, A.O. Rios, S.M. Alencar, A.R. Schwember, A.C.J. Camargo, Food Bioact. 2019, 5, 136.
  • [14] S. Zhang, Z. Yu, J. Xia, X. Zhang, K. Liu, A. Sik, M. Jin, Food Funct. 2020,11, 1425.
  • [15] T. Pejcic, T. Tosti, Z. Dżamić, U. Gasić, A. Vuksanovic, Z. Dolićanin, Z. Tesic, Molecules 2019,24, 3982.
  • [16] Z. Bahadoran, P. Mirmiran, F. Azizi, Diabetes Metab. Disord. 2013,12,43.
  • [17] M. Sari, Y. Chung, F. Agatha, H.K. Kim, Applied Biol. Chem. 2019, 62, 1.
  • [18] G.M. Pasinetti, R. Singh, S. Westfall, F. Herman, J. Faith, L. Ho, Alzheimers Dis. JAD 2018, 63,409.
  • [19] F. Cardona, C. Andrés-Lacueva, S. Tulipani, F.J. Tinahones, M.I. Queipo-Ortuño, J. Nutr. Biochem. 2013,24,1415.
  • [20] J.H. Tao, J.A. Duan, S. Jiang, Y.Y. Qian, D.W. Qian, J. Chromatogr. В Analyt. Technol. Biomed. Life. Sci. 2016,1025, 7.
  • [21] A.W.C. Man, Y. Zhou, N. Xia, H. Li, Nutrients 2020,12, 3054.
  • [22] J. Korus, B. Achremowicz, M. Sikora, ŻNTJ, 1997,1,30.
  • [23] R.F.S Gonçalves, J.T. Martins, C.M.M. Duarte, A.A. Vicente, A.C. Pinheiro, Trends Food Sci. Technol. 2018,78,270.
  • [24] M. Przybysławska, K. Winnicka, Technologia Postaci Leku 2012, 68,283.
  • [25] S. Xiong, L.D. Melton, A.J. Easteal, D. Siew, J. Agrie. Food Chem. 2006, 54, 62018.
  • [26] L. Deladino, P.S. Anbinder, A.S. Navarro, M.N. Martino, Carbohydr Polym. 2008, 71,12634.
  • [27] M.P. Nori, C.S. Favaro-Trindade, S. Matías de Alencar, M. Thomazini, J. de Camargo Balieiro, C.J. Contreras Castillo, LWT - Food Sci. Technol. 2011,44, 42935.
  • [28] M. Sessa, A.A. Casazza, P. Perego, R. Tsao, G. Ferrari, F. Donsi, Food Bioprocess Technol 2012, 6, 2609.
  • [29] M.P. Almajano, R. Carbó, L.A.L. Jimenez, M.H. Gordon, Food Chem 2008, 108, 55.
  • [30] A. Barras, A. Mezzetti, A. Richard, S. Lazzaroni, S. Roux, P. Melnyk, D. Betbeder, N. Monfilliette-Dupont. Int. J. Pharmaceut. 2009, 379,270.
  • [31] Z. Fang, B. Bhandari, Trends Food Sci. Techn. 2010, 21, 510.
  • [32] Q.L. Lin, J. Wang, D. Qin, B. Björn, Sci China Ser B-Chem 2007, 50, 121.
  • [33] Q. Lu, D.C. Li, J.G. Jiang, J. Agrie. Food Chem. 2011, 59, 13004.
  • [34] C. Caddeo, K. Teskac, C. Sinico, J. Kristi, Int. J. Pharmaceut. 2008, 363, 183.
  • [35] N. Bernardy, A.P. Romio, E.I. Barcelos, C.D. Pizzol, C.L. Dora, E. Lemos-Senna, P.H.H. Araujo, С. Sayer, J Biomed. Nano. Technol. 2010, 6, 181.
  • [36] L.A. Fogaça, P.E. Feuser, E. Ricci-Júnior, P.H.H. de Araújo, С. Sayer, C. da Costa Mater. Res. Exprés 2020, 7, 015096.
  • [37] E. Dłużewska, Przem. Spoż. 2008, 62, 30.
  • [38] R. Watson, V. Preedy, S. Zibadi. Polyphenols in Human Health and Disease, Academic Press, 2013.
  • [39] S.S. Bansode, S.K. Banarjee, D.D. Gaikwad, S.L. Jadhav, R.M. Thorat. Int. J. Pharm. Sci. Rev. Res. 2010,1, 38.
  • [40] G. Davidov-Pardo, I Arozarena, R. Marin. Food Bioproc Tech. 2013, 6, 941.
  • [41] L. Zhang, D. Mou, Y. Du. J. Agrie. Food Chem, 2007, 87,2192.
  • [42] W. Ambroziak, A. Wilkowska, J. Adamiec. Designed Food, 2011, 3, 30.
  • [43] S.L. Kosaraju, L. D’ath, A. Lawrence, A. Carbohydr. Polym. 2006, 64, 163.
  • [44] D. Chiou, T.A.G. Langrish, T. A. G. J. Agrie. Food Chem. 2007, 82, 84.
  • [45] S.R. Georgetti, R. Casagrande, C.RF. Souza, W.P. Oliveira, M.J.V. Fonseca, LWT - Food Sci. Technol., 2008, 41, 1521.
  • [46] K. Samborska. Postępy Techniki Przetwórstwa Spożywczego, 2008,1, 63.
  • [47] L. Qingyong, W. Chien M. Talanta, 2001, 53, 771.
  • [48] E. Janiszewska, D. Witrowa-Rajchert, E. Rój, ŻNTJ, 2013, 91, 5.
  • [49] A. Visentin, S. Rodríguez-Rojo, A. Navarrete, D. Maestri, M.J. Cocero, J. Food Eng. 2012,109, 9.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2435d730-90a8-4cb3-aa81-0ebfc207ab08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.