PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Towards clean energy production

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Implementation of stringent regulations of emission from power plants requires the development of new strategies and technologies for removal of pollutants from exhaust gases. This article summarizes current state of PM, NOx, SO2 and CO2 abatement methods. The review is focused on the methods proved in industrial practice at commercially available and pilot installations.
Rocznik
Tom
Strony
91--116
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
autor
  • The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences Fiszera 14, Centre for Plasma and Laser Engineering, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Singh R., Shukla A.: A review on methods of flue gas cleaning from combustion of biomass. Renew. Sustain. Energy Rev. 292014), 854–864.
  • [2] Skalska K., Miller J.S., Ledakowicz S.: Trends in NOx abatement: A review. Sci. Total Environ. 408(2010), 19, 3976–3989.
  • [3] Basfar A.A., Fageeha O.I., Kunnummal N., Chmielewski A.G., Licki J., Pawelec A., Zimek Z.: A review on electron beam flue gas treatment (EBFGT) as a multicomponent air pollution control technology. Nukleonika 55(2010), 3, 271–277.
  • [4] Songolzadeh M., Soleimani M., Takht Ravanchi M., Songolzadeh R.: Carbon dioxide separation from flue gases: a technological review emphasizing reduction in greenhouse gas emissions. Sci. World J. 2014(2014).
  • [5] Jaworek A., Krupa A., Czech T.: Modern electrostatic devices and methods for exhaust gas cleaning: a brief review. J. Electrostat. 65 (2007), 133–155.
  • [6] Woolcock P.J., Brown R.C.: A review of cleaning technologies for biomass-derived syngas. Biomass Bioenerg. 52(2013), 54–84.
  • [7] European Commission: Integrated Pollution Prevention and Control, Reference Document on Best Available Techniques for Large Combustion Plants. 2006.
  • [8] Ohlstrom M., Herring P.: Combating Particulate Emissions in Energy Generation and Industry. Tekes, 2006.
  • [9] Nussbaumer T.: Overview on Technologies for Biomass Combustion and Emission Levels of Particulate Matter, 2010, http://citepaax.alias.domicile.fr/forums/egtei/Nussbaumer_EGTEIReport_ final.pdf
  • [10] Friebel J., Kopsel R.F..: The fate of nitrogen during pyrolysis of German low rank coals — a parameter study. Fuel 78(1999), 8, 923–932.
  • [11] Gomez-Garcia M.A., Pitchon V., Kiennemann A.: Pollution by nitrogen oxides: an approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 31(2005), 3, 445–67.
  • [12] Tayyeb Javed M., Irfan N., Gibbs B.M.: Control of combustiongenerated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manage. 83(2007), 251–289.
  • [13] Lee D.H., Kim K.T., Kang H.S., Song Y.H., Park J.E.: Plasma-assisted combustion technology for NOx reduction in industrial burners. Environ. Sci. Technol. 47(2013), 10964–10970.
  • [14] Cheng X., Bi X.T.: A review of recent advances in selective catalytic NOx reduction reactor technologies. Particuology 16(2014), 1–18.
  • [15] Kim H.-H.: Nonthermal plasma processing for air-pollution control: a historical review, current issues, and future prospects. Plasma Process. Polym. 1(2004), 91–110.
  • [16] Lee Y.H., Jung W.S., Choi Y.R., Oh J.S., Jang S.D., Son Y.G., Cho M.H., Namkung W., Koh D.J., Mok Y.S., Chung J.W.: Application of pulsed corona induced plasma chemical process to an industrial incinerator. Environ. Sci. Technol. 37(2003), 2563–2567.
  • [17] Mok Y.S.: Combined desulphurization and denitrification using dielectric barrier discharge and wet reduction technique. J. Chem. Eng. Japan 39(2006), 3, 366–372.
  • [18] Van Durme J., Dewulf J., Leys C., Van Langenhove H.: Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: a review. Appl. Catal. B Environ. 78(2008), 324–333.
  • [19] Talebizadeh P., Babaie M., Brown R., Rahimzadeh H., Ristovski Z., Arai M.: The role of non-thermal plasma technique in NOx treatment: a review. Renew. Sustain. Energy Rev. 40(2014), 886–901.
  • [20] Newton G.H., Harrison D.J., Silcox G.D., Pershing D.W.: Control of SOx Emissions by In-Furnace Sorbent Injection – Carbonates vs Hydrates. Environ. Prog. 5(1986), 2, 140–145.
  • [21] Toole-O’Neil B., Office O.C.D.: Dry Scrubbing Technologies for Flue Gas Desulfurization. Springer, 1998.
  • [22] Wang M., Lawal A., Stephenson P., Sidders J., Ramshaw C.: Postcombustion CO2 capture with chemical absorption: A state-of-the-art review. Chem. Eng. Res. Des. 89(2011), 1609–1624.
  • [23] Idem R., Wilson M., Tontiwachwuthikul P., Chakma A., Veawab A., Aroonwilas A., Gelowitz D.: Pilot plant studies of the CO2 capture performance of aqueous MEA and mixed MEA/MDEA solvents at the University of Regina CO2 Capture Technology Development Plant and the Boundary Dam CO2 Capture Demonstration Plant. Ind. Eng. Chem. Res. 45(2005), 8, 2414–2420.
  • [24] Holst J. van, Versteeg G.F., Brilman D.W.F., Hogendoorn J.A.: Kinetic study of with various amino acid salts in aqueous solution. Chem. Eng. Sci. 64(2009), 59–68.
  • [25] Hamborg E.S., Versteeg G.F.: Dissociation constants and thermodynamic properties of alkanolamines. Energy Procedia 1(2009), 1213– 1218.
  • [26] Bishnoi S., Rochelle G.T.: Thermodynamics of piperazine/methyldiethanolamine/ water/carbon dioxide. Ind. Eng. Chem. Res. 41(2002), 3, 604–612.
  • [27] Darde V., Thomsen K., van Well W.J.M., Stenby E.H.: Chilled ammonia process for CO2 capture. Energy Procedia 1(2009), 1035–1042.
  • [28] Lee Z.H., Lee K.T., Bhatia S., Mohamed A.R.: Post-combustion carbon dioxide capture: Evolution towards utilization of nanomaterials. Renew. Sustain. Energy Rev. 16(2012), 2599–2609.
  • [29] D’Alessandro D.M., Smit B., Long J.R.: Carbon dioxide capture: prospects for new materials. Angew. Chem. Int. Ed. Engl. 49(2010), 6058–6082.
  • [30] Tuinier M.J., Hamers H.P., Van Sint Annaland M.: Techno-economic evaluation of cryogenic CO2 capture-A comparison with absorption and membrane technology. Int. J. Greenh. Gas Control 5(2011), 1559–1565.
  • [31] Lively R.P., Koros W.J., Johnson J.R.: Enhanced cryogenic CO2 capture using dynamically operated low-cost fiber beds. Chem. Eng. Sci. 71(2012), 97–103.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-242e85b5-a4c4-45a9-8ff8-c5278f6e5bb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.