Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the authors propose a method of verifying formulae in normal modal logics. In order to show that a formula α is a thesis of a normal modal logic, a set of decomposition rules for any formula is given. These decomposition rules are based on the symbols of assertion and rejection of formulae.
Rocznik
Tom
Strony
13--20
Opis fizyczny
Bibliogr. 7 poz.
Twórcy
autor
autor
- Institute of Mathematics and Informatics University of Opole, ul. Oleska 48, 45–052 Opole, Poland
Bibliografia
- [1] R. Goré. Tableau methods for modal and temporal logics, In: M. D’Agostino, D.M. Gabbay, R. Hähnle, J. Posegga (eds.), Hand-book of Tableau Methods , pp. 297-396, Kluwer Academic Publishers, Dordrecht 1999.
- [2] G.E. Hughes, M.J. Cresswell. An Introduction to Modal Logic. Methuen Inc., New York 1968.
- [3] S.A. Kripke. A completeness theorem in modal logic. J. Symbolic Logic,24 , 1–14, 1959.
- [4] S.A. Kripke. Semantical analysis of modal logic I. Normal modal propositional calculi. Z. Math. Logik Grundlag. Math.,9 , 67-96, 1963.
- [5] J. Perzanowski. The deduction theorems for the modal propositional calculi formalized after the manner of Lemmon, part 1. Rep. Math. Logic ,1 , 1-12, 1973.
- [6] G. Priest. An Introduction to Non-classical Logic . Cambridge University Press, Cambridge 2001.
- [7] K. Świrydowicz. Podstawy logiki modalnej (Foundations of Modal Logic). Wydawnictwo Naukowe UAM, Poznań 2004. (In Polish).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2425d08d-83c8-4664-9017-4dfea46bafc1