PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of activator on foam properties in sulfurous iron ore flotation

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sulfurous iron minerals with recovery value are contained in a lead-zinc tailing in Fujian Province, China. However, the sulfurous iron minerals are depressed by lime in the early lead-zinc flotation, therefore it is necessary to use appropriate activators to improve the floatability of the mineral. The property of flotation foam can directly reflect the quality of the flotation index. The addition of activators can also change the properties of flotation foam. In this paper, an effective activator combination was selected through actual mine tests and foam analysis. The mineralogical study of the lead-zinc tailing was first carried out through chemical multi-element analysis and XRD. The flotation tests on the recovery of sulfurous iron ore by different activators were carried out. Finally, a foam scanning analyzer was used to test and analyze the frothing performance and froth stability of the slurry under different activation conditions. The results showed that the dispersion-activation flotation and dispersion-combined activation flotation can help to improve the frothing performance of the slurry and improve the flotation indexes. At the same time, the enhanced activated flotation can also reduce the froth stability indexes (FSI) to less than 20 s, and the reduction of the froth stability can help to improve the flotation recovery. For each activation flotation process that achieves the best flotation index, the frothing performance and foam stability of the pulp is close to that of the flotation tests index.
Słowa kluczowe
Rocznik
Strony
art. no. 192825
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
  • Fujian Key Laboratory of Green Extraction and High Value Utilization of New Energy Metals, Fuzhou 350108, China
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
autor
  • Zijin School of Geology and Mining, Fuzhou University, Fuzhou 350108, China
Bibliografia
  • Al MAHROUQI, D., VINOGRADOV, J., JACKSON, M.D., 2017. Zeta potential of artificial and natural calcite in aqueous solution. Adv. Colloid Interfac. 240, 60-76.
  • BAI, S., BI, Y., LI, J., YU, P., DING, Z., LV, C., WEN, S., 2021. Innovative utilization of acid mine drainage (AMD): A promising activator for pyrite flotation once depressed in a high alkali solution (HAS)–Gearing towards a cleaner production concept of copper sulfide ore. Miner. Eng. 170, 106997.
  • CAN, İ.B., ÖZÇELIK, S., EKMEKÇI, Z., 2021. Effects of pyrite texture on flotation performance of copper sulfide ores. Minerals. 11(11), 1218.
  • CHEN, H., CHEN, Z., WEI, B., JIANG, Q., 2023. A novel approach for quantitative characterization of aqueous in-situ foam dynamic structure based on fractal theory. Fuel. 352, 129149.
  • CLAREMBOUX, V., 2020. Role of flocculation and dispersion in pelletization of iron ore. (Master's thesis, Michigan Technological University).
  • DENG, J., LIU, C., YANG, S., LI, H., LIU, Y., 2019. Flotation separation of barite from calcite using acidified water glass as the depressant. Colloid. Surface. A. 579, 123605.
  • FU, Y., HOU, Y., WANG, R., WANG, Y., YANG, X., DONG, Z., LIU, J., MAN, X., YIN, W., YANG, B., TANG, H., 2021. Detailed insights into improved chlorite removal during hematite reverse flotation by sodium alginate. Miner. Eng. 173, 107191.
  • GAVRILLOVA, T.G., KONDRAT’EV, S.A., 2020. Effect of physisorption of collector on activation of flotation of sphalerite. J. Min Sci. 56(3), 445-456.
  • JEFFERSON, M., YENIAL-ARSLAN, U., EVANS, C., CURTIS-MORAR, C., O'DONNELL, R., PARBHAKAR-FOX, A., FORBES, E., 2023. Effect of pyrite textures and composition on flotation performance: A review. Miner. Eng. 201, 108234.
  • JIANG, K. HAN, Y., LIU, J., WANG, Y., GE, W., ZHANG, D., 2023. Experimental and theoretical study of the effect of pH level on the surface properties and floatability of pyrite. Appl. Surf. Sci. 615, 156350.
  • JOHN, J., EVANS, C., JOHNSON, N.W., 2020. The influence of lime and sodium hydroxide conditioning on sulfide sulfur behaviour in pyrite flotation. Miner. Eng. 151, 106304.
  • KOVALCHUK, E.V., TAGIROV, B.R., BORISOVSKY, S.E., NICKOLSKY, M.S., TYUKOVA, E.E., SIDOROVA, N.V., KOMAROV, V.B., MEZHUEVA, A.A., PROKOFIEV, V.Y., VIKENTYEV, I.V., 2024. Gold and arsenic in pyrite and marcasite: Hydrothermal experiment and implications to natural ore-stage sulfides. Minerals. 14, 170.
  • LI, Z., HANAOKA, T., 2020. Development of large-point source emission downscale model by estimating the future capacity distribution of the Chinese iron and steel industry up to 2050. Resour. Conserv. Recy. 161, 104853.
  • LIU, S., GE, Y., FANG, J., YU, J., GAO, Q., 2020. An investigation of froth stability in reverse flotation of collophane. Miner. Eng. 155, 106446.
  • MASOTTA, M., ROCCHI, I., PAZZAGLI, G., D'AMBROSIO, R., SEGGIANI, M., 2021. Recovery of sulfur from sulfur-rich filter cakes in a rotary kiln: Process optimization. Waste. Manage. 126, 567-577.
  • MORENO, Y.S., BOURNIVAL, G., ATA, S., 2021. Foam stability of flotation frothers under dynamic and static conditions. Sep. Purif. Technol. 274, 117822.
  • NAYAK, A., JENA, M.S., MANDRE, N. R., 2022. Beneficiation of lead-zinc ores–a review. Miner. Process. Extr. M. 43(5), 564-583.
  • NLEYA, Y., SIATE, G.S., NDLOVU, S., 2016. Sustainability assessment of the recovery and utilization of acid from acid mine drainage. J. Clean. Prod. 113, 17-27.
  • NYSTRÖM, E., KAASALAINEN, H., ALAKANGAS, L., 2019. Prevention of sulfide oxidation in waste rock by the addition of lime kiln dust. Environ. Sci. Pollut. R. 26, 25945-25957.
  • QUEZADA, G.R., PICEROS, E., ROBLES, P., MORAGA, C., GÁLVEZ, E., NIETO, S., JELDRES, R.I., 2021. Polyacrylic acid to improve flotation tailings management: Understanding the chemical interactions through molecular dynamics. Metals. 11(6), 987.
  • TANER, H.A., ONEN, V., 2024. Mechanism of mechanical entrainment in chalcopyrite flotation: Effects of clay minerals. Mining. Metall. Explor. 41(1), 311-319.
  • WANG, Q., WANG, D., SHEN, Y., WANG, H., XU, C., 2017. Influence of polymers on dust-related foam properties of sodium dodecyl benzene sulfonate with Foamscan. J. Disper. Sci. Technol. 38(12), 1726-1731.
  • WANG, J., CAO, Y., LI, G., DENG, L., LI, S., 2018. Effect of CTAB concentration on foam properties and discussion based on liquid content and bubble size in the foam. Int. J. Oil. Gas. Coal. T. 6(1), 18-24.
  • WANG, L., WANG, G., GE, P., SUN, W., TANG, H., HU, W., 2022. Activation mechanisms of quartz flotation with calcium ions and cationic/anionic mixed collectors under alkalescent conditions. Colloid. Surface. A. 632, 127771.
  • WANG, L., WEI, B., WANG, H., SHEN, P., LIU, D., 2024. Effect of lead ions treatment on the flotation behavior of lime-depressed pyrite in a butyl xanthate system. Sep. Purif. Technol. 128398.
  • WENG, W., ZHANG, W., LIN, H., CHI, X., ZHONG, S., 2023. Fixing sulfur dioxide by feeding calcine oxide into the rotary volatilization kiln in the zinc smelting plant. Environ. Sci. Pollut. R. 30.1, 43768-43777.
  • YANG, W., FENG, Q., HAN, G., 2023. A novel activation approach for promoting chrysocolla flotation: Performance and mechanism. Appl. Surf. Sci. 640, 158426.
  • ZHANG, Q., WEN, S., FENG, Q., LIU, Y., 2021. Activation mechanism of lead ions in the flotation of sulfidized azurite with xanthate as collector. Miner. Eng. 163, 106809.
  • ZHANG, Y., CHEN, H., CHENG, J., TIAN, J., ZHANG, L., OLIN, P., 2022. Pyrite geochemistry and its implications on Au-Cu skarn metallogeny: An example from the Jiguanzui deposit, Eastern China. Am Mineral. 107.10, 1910-1925.
  • ZHAO, F., YU, X., GAO, X., LI, M., CHEN, X., 2023. The selective depression effect of sodium hexametaphosphate on the separation of chlorite and specularite. Physicochem. Probl. Mi. 59.
  • ZHOU, H.P., HU, J., ZHANG, Y.B., CAO, Y.J., LUO, X.P., TANG, X.K., 2020. Effectively enhancing recovery of fine spodumene via aggregation flotation. Rare Metals. 39, 316-326.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-2421bbde-ab59-4a78-ad5f-82e9d8c2971c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.