Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Pentavalent niobium cation forms a stable yellow-colored binary complex with 6-chloro-3-hydroxy-7-methyl-2-(2’- thienyl)-4H-chromen-4-one (CHMTC) in the ratio of 1:2. The complex is quantitatively extractable into carbon tetrachloride from HClO4 solution maintained at pH 1.26–1.75 and strictly adheres to Beer’s law as verified by the Ringbom plot with an optimized range of determination as 0.385–1.211 ppm of Nb(V). The ligand-metal complex system shows good precision, accuracy, sensitivity, and selectivity and handles satisfactorily the analysis of several samples of varying complexity. The results are highly reproducible as confirmed by statistical data. The stability of the complex is theoretically confirmed with the help of HOMO-LUMO values and the energy gap [for CHMTC, ΔEgap = 3.62 V and for Nb(V)-CHMTC Complex, ΔEgap = 2.97 eV]. The reactivity descriptors were calculated for detailed computational study to probe into the chemical behavior of the studied ligand and its complex. Further, mapped electrostatic potential diagrams help in justifying the donor sites of CHMTC ligand which is in accordance with the analytical findings.
Czasopismo
Rocznik
Tom
Strony
63--70
Opis fizyczny
Bibliogr. 52 poz., rys., tab., wz.
Twórcy
autor
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
autor
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala-133207, Haryana, India
autor
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
autor
- Department of Chemistry, Jamia Milia Islamia, New Delhi, India
autor
- Department of Physics, Aringnar Anna Govt. Arts College, Cheyyar-604407, India
autor
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
autor
- Department of Safety Engineering, Dongguk University, 123 Dongdae-ro, Gyeongju 780714, Gyeongbuk, South Korea
Bibliografia
- 1. Samsonov, G.V. (1968). Mechanical Properties of the Elements, Handbook of the physicochemical properties of the elements. New York, USA (pp. 387–446).
- 2. Brian, K. (2002). Francium to Polonium: Atlantic Europe Publishing Company 40.
- 3. Standard Atomic Weights: Niobium: CIAAW (2017).
- 4. Peiniger, M. & Piel, H. (1985). A Superconducting Nb3Sn Coated Multicell Accelerating Cavity. IEEE Trans. Nucl. Sci. 32(5), 3610–3612. DOI: 10.1109/TNS.1985.4334443.
- 5. Moura, H.R.S. & De Moura, L. (2007). Melting and purification of niobium. Proceedings of the International Niobium Workshop; Ganapati Rao Myneni, Tadeu Carneiro and Andrew Hutton. AIP Conference Proceedings 927, 30 October – 1 November 2006 (pp. 165–178). Araxa, Brazil. DOI: 10.1063/1.2770689.
- 6. Nowak, I. & Ziolek, M. (1999). Niobium Compounds: Preparation, Characterization and Application in Heterogeneous Catalysis. Chem. Rev. 99, 3603–3624. DOI: 10.1021/cr9800208.
- 7. Jahnke, L.P., Frank, R.G. & Redden, T.K. (1960). Columbium Alloys Today. Metal. Progr. 77, 69–74. URL: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=4183692.
- 8. Nikulina, A.V. (2003). Zirconium-Niobium Alloys for Core Elements of Pressurized Water Reactors. Met. Sci. Heat Treat. 45, 287–292. DOI: 10.1023/A:1027388503837.
- 9. Behera, A. (2022). Advanced Semiconductor/Conductor Materials. Adv. Mat. Springer, Cham. (pp. 557–596). DOI: 10.1007/978-3-030-80359-9_16.
- 10. Vilaplana, J., Romaguera, C., Grimalt, F. & Cornellana, F. (1990). New trends in the use of metals in jewellery. Contact Derm. 25, 145–148. DOI: 10.1111/j.1600-0536.1991.tb01819.x.
- 11. Vilaplana, J. & Romaguera, C. (1998). New developments in jewellery and dental materials. Contact Derm. 39, 55–57. DOI: 10.1111/j.1600-0536.1998.tb05832.x.
- 12. Helaluddin, A.B.M., Khalid, R.S., Alaama, M. & Abbas, S.A. (2016). Main Analytical Techniques Used for Elemental Analysis inVarious Matrices. Trop. J. Pharm. Res. 15, 427–434. DOI: 10.4314/tjpr.v15i2.29.
- 13. Dong, H.M. & Krivan, V. (2001). Direct solid-sampling electrothermal atomic absorption spectrometry methods for the determination of silicon in oxides of niobium, titanium and zirconium. Spectrochim. Acta. Part B. 56, 1645–1656. DOI: 10.1016/S0584-8547(01)00255-5.
- 14. Lu, X.M. & Jin, D.L. (2009). Determination of niobium, silicon and phosphorus in ferrocolumbium by X-ray fluorescence spectrometry using sample preparation technique of centrifugal casting. Met. Anal. 29, 16–19.
- 15. Petrova,, K.V., Baranovskaya V.B. & Korotkova, N.A. (2022). Direct inductively coupled plasma optical emission spectrometry for analysis of waste samarium-cobalt magnets. Arab. J. Chem. 15,103501. DOI: 10.1016/j.arabjc.2021.103501.
- 16. Faix, W.G., Caletka, R. & Krivan, V. (1981). Radio-chemical multielement neutron activation analysis of high-purity niobium with short-lived indicator radionuclides. Anal. Chem. 53, 1594–1598. URL: https://eurekamag.com/research/087/033/087033214.php
- 17. Ruiz, M.D.C., Rodriguez, M.H., Perino, E. & Olsina, R.A. (2002). Determination of Nb, Ta, Fe and Mn by X-ray fluorescence. Miner. Engg. 15, 373–375. DOI: 10.1016/S0892-6875(02)00039-0.
- 18. Yi, W.J., Li, Y., Ran, G., Luo, H.Q. & Li, N.B. (2012). Determination of cadmium (II) by square wave anodic stripping voltammetry using bismuth–antimony film electrode. Sens. Actua. B: Chem. 166–167, 544–548. DOI: 10.1016/j.snb.2012.03.005.
- 19. Hamed, M.M., Aglan, R.F. & El-Reefy, S.A. (2015). Normal and second derivative spectrophotometric determination of niobium using solid phase extraction technique. J Anal. Chem. 70, 1103–1110. DOI: 10.1134/S1061934815090075.
- 20. Verdizade, N.A., Zalov, A.Z. & Suleymanova, G.S. (2017). Extraction-spectrophotometric determination of niobium and tantalum. Azerb. Khim Zh. 1, 72–76. URL: https://akj.az/uploads/journal/az/Verdizade.pdf
- 21. Kutyrev, I.M., Nechepurenko, G.N. & Gaidukova, Yu. A. (2014). Extraction-spectrophotometric determination of niobium in magnetic alloys. Inorg. Mater. 50, 1405–1407. DOI: 10.1134/S0020168514140088.
- 22. Agnihotri, N. & Agnihotri, R. (2012). Extractive spectrophotometric determination of niobium (V) using 3-hydroxy-2-(4’-methoxyphenyl)-4-oxo-4H-1-benzopyran as a complexing agent. Open Anal. Chem. J. 6, 39–44. DOI: 10.2174/1874065001206010039.
- 23. Tarafder, P.K., Mondal, R.K. & Chattopadhaya, S. (2009). Extraction and sensitive spectrophotometric determination of niobium in silicate rocks and columbite-tantalite minerals. Chem. Anal. Warsaw. 54, 231–246.
- 24. Agnihotri, N., Kamal, R. & Mehta, J.R. (2006). A highly selective spectrophotometric determination of niobium (V) using 3-hydroxy-2-[1’-phenyl-3’-(p-chlorophenyl)-4’-pyrazolyl]-4-oxo-4H-1-benzopyran as a complexing agent. Ann. Chim. (Rome, Italy). 96, 479–485. DOI: 10.1002/adic.200690048.
- 25. Agnihotri, N. & Mehta, J.R. (2003). A highly selective spectrophotometric determination of niobium(V) using 6-chlo-ro-2-(2’-furyl)-3-hydroxy-4-oxo-4H-1-benzopyran as a complexing agent and chloroform as an extractant. J. Indian Chem. Soc. 80, 837–840.
- 26. Uddin, M.A., Sutonu, B.H., Rub, M.A., Mahbub, S., Alotaibi, M.M., Asiri, A.M. & Kabir, M. (2022). UV-Visible spectroscopic and DFT studies of the binding of ciprofloxacin hydrochloride antibiotic drug with metal ions at numerous temperatures. Korean J. Chem. Eng. 39, 664–673. DOI: 10.1007/s11814-021-0924-z.
- 27. Eroshin, A.V., Otlyotov, A.A., Kuzmin, I.A., Stuzhin, P.A. & Zhabanov, Y.A. (2022). DFT Study of the Molecular and Electronic Structure of Metal-Free Tetrabenzoporphyrin and Its Metal Complexes with Zn, Cd, Al, Ga, In. Int. J. Mol. Sci. 23, 939. DOI: 10.3390/ijms23020939.
- 28. da Silva, T.U., da Silva, E.T., de Carvalho, Pougy, K., da Silva, Lima, C.H. & de Paula, Machado, S. (2022), Molecular modeling of indazole-3-carboxylic acid and its metal complexes (Zn, Ni, Co, Fe and Mn) as NO synthase inhibitors: DFT calculations, docking studies and molecular dynamics simulations. Inorg. Chem. Commun. 135, 109120. DOI: 10.1016/j. inoche.2021.109120.
- 29. Waheeb, A.S., Kyhoiesh, H.A.K., Salman, A.W., Al-Adilee, K.J. & Kadhim, M.M. (2022). Metal Complexes of a new azo Ligand 2-[2’-(5-Nitrothiazolyl) azo]-4-methoxyphenol (NTAMP): Synthesis, Spectral Characterization and Theoretical Calculation. Inorg. Chem. Commun. 138, 109267. DOI: 10.1016/j.inoche.2022.109267.
- 30. Zayed, E.M. & Mohamed, G. (2022). Synthesis, spectroscopic, DFT and docking studies, molecular structure of new Schiff base metal complexes. Egypt. J. Chem. 65, 633–644. DOI: 10.21608/ejchem.2021.83871.4116.
- 31. Dege, N., Gökce, H., Doğan, O.E., Alpaslan, G., Ağar, T., Muthu, S. & Sert, Y. (2022). Quantum computational, Spectroscopic Investigations on N-(2-((2-chloro-4,5-dicyanophenyl)amino)ethyl)-4-methylbenzenesulfonamide by DFT/TD-DFT with Different Solvents, Molecular Docking and Drug-Likeness Researches. Coll. Sur: Physicochem. Engg. Aspect. 638, 128311. DOI: https://newsletter.x-mol.com/paper-Redirect/1482122577481203712.
- 32. Kansız, S., Tolan A., Azam M., Dege N., Alam M., Sert Y., Al-Resayes S. & İçbudak H. (2022). Acesulfame based Co(II) complex: Synthesis, Structural investigations, Solvatochromism, Hirshfeld surface analysis and Molecular docking studies. Polyhedron. 218, 115762. DOI: 10.1016/j.poly.2022.115762.
- 33. Mahmudov, I., Demir, Y., Sert, Y., Abdullayev, Y., Sujayev, A., Alwasel, S.H. & Gulcin, I. (2022). Synthesis and Inhibition Profiles of N-Benzyl- and N-Allyl Aniline Derivatives against Carbonic Anhydrase and Acetylcholinesterase – A Molecular Docking Study. Arab. J. Chem. 15, 103645. DOI: 10.1016/j.arabjc.2021.103645.
- 34. Abdulridha, A., Albo Hay Allah, M.A., Makki, A.Q., Sert, Y., Salman, H. & Balakit, A. (2020). Corrosion inhibition of carbon steel in 1 M H2SO4 using new Azo Schiff compound: Electrochemical, gravimetric, adsorption, surface and DFT studies. J. Mol. Liq. 315, 113690. DOI: 10.1016/j. molliq.2020.113690.
- 35. Algar J. & Flynn J.P. (1934). A new method for the synthesis of flavonols. Proc. Roy. Irish Acad. 42B, 1-7.
- 36. Oyamada, T. (1934). A new general method for the synthesis of the derivatives of flavonol. J. Chem. Soc. Jpn. 55, 1256–1261.
- 37. Kumar, A., Trivedi, M., Bhaskaran, S.R.K. & Singh, G. (2017). Synthetic, spectral and structural studies of a Schif base and its anticorrosive activity on mild steel in H2SO4. New J. Chem. 41, 8459–8468. DOI: 10.1039/C7NJ00896A.
- 38. Muscat, J., Wander, A. & Harrison, N.M. (2001). On the prediction of band gaps from hybrid functional theory. Chem. Phys. Lett. 342, 397–401. DOI: 10.1016/S0009-2614(01)00616-9.
- 39. Rienstra-Kiracofe, J.C., Barden, C.J., Brown, S.T. & Schaefer, H.F. (2001). Electron affinities of polycyclic aromatic hydrocarbons. J. Phys. Chem. 105, 524–528. DOI: 10.1021/jp003196y.
- 40. Vektariene, A., Vektaris, G. & Svoboda, J. (2009). A theoretical approach to the nucleophilic behaviour of benzo fused thieno [3,2-b] furans using DFT and HF based reactivity descriptors. ARKIVOC. 7, 311–329. DOI: 10.3998/ark.5550190.0010.730.
- 41. Arab, A., Gobal, F., Nahali, N. & Nahali, M. (2013). Electronic and structural properties of neutral, anionic and cationic RhxCu4–x (x= 0–4) small clusters: a DFT study. J. Clust. Sci. 24, 273–287. DOI: 10.1007%2Fs10876-013-0550-y.
- 42. Arab, A. & Habibzadeh, M. (2016). Theoretical study of geometry, stability and properties of Al and Al Si nanoclusters. J. Nanostruct. Chem. 6, 111–119. DOI: 10.1007/s40097-015-0185-7.
- 43. Ringbom, A. (1938). On the accuracy of colorimetric analytical methods. Anal. Chem. 115, 332–343.
- 44. Job, P. (1928). Formation and stability of inorganic complexes in solution. Ann. di Chim. 9, 113–203.
- 45. Vosburgh, W.C. & Cooper, G.R. (1941). Complex ions. I. The identification of complex ion in solution by spectrophotometric measurements. J. Am. Chem. Soc. 63, 437–442. DOI: 10.1021/ja01847a025.
- 46. Yoe, J.H. & Jones, A.L. (1944). Colorimetric determination of iron with disodium-1,2-dihydroxybenzene-3,5-disulfonate. Ind. Eng. Chem. (Anal. Ed.). 16, 111–115. DOI: 10.1021/i560126a015.
- 47. Tarasiewicz, H.P., Grudiniewska, A. & Tarasiewicz, M. (1977). An examination of chlorpromazine hydrochloride as indicator and spectrophotometric reagent for the determination of molybdenum (V). Anal. Chim. Acta. 94, 435–442. DOI: 10.1016/S0003-2670(01)84546-3.
- 48. Verma, V.K., Guin, M., Solanki, B. & Singh, R.C. (2022). Molecular structure, HOMO and LUMO studies of Di (Hydro-xybenzyl) diselenide by quantum chemical investigations. Mater. Today Proc. 49, 3200–3204. DOI: 10.1016/j.matpr.2020.11.887.
- 49. Üstün, E., Düşünceli, S.D. & Özdemir, I. (2019). Theoretical analysis of frontier orbitals, electronic transitions and global reactivity descriptors of M(CO)4L2 type metal carbonyl complexes: a DFT/TDDFT study. Struct. Chem. 30, 769–775. DOI: 10.1007/s11224-018-1231-0.
- 50. Dhonchak, C., Agnihotri, N. & Kumar, A. (2021). Zirconium (IV)-3-hydroxy-2-tolyl-4H-chromen-4-one complex-the analytical and DFT studies. J. Mol. Model. 27, 336. DOI: 10.1007/s00894-021-04949-0.
- 51. Sowrirajan, S., Elangovan, N., Ajithkumar, G. & Manoj, K.P. (2022). (E)-4-((4-Bromobenzylidene) Amino)-N-(Pyrimidin-2-yl) Benzene sulfonamide from 4-Bromobenzaldehyde and Sulfadiazine, Synthesis, Spectral (FTIR, UV–Vis), Computational (DFT, HOMO–LUMO, MEP, NBO, NPA, ELF, LOL, RDG) and Molecular Docking Studies. Polycyc. Arom. Compd. 1–16. DOI: 10.1080/10406638.2021.2006245.
- 52. Luque, F.J., Lopez, J.M., Orozco, M., Muray, J.S. & Sen, K. (2000). Perspective on electrostatic interactions of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Theor. Chem. Acc. 103, 343–345. DOI: 10.1007/s002149900013.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24205f01-f383-420d-aaf6-d47b716b9edb