PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of rise in temperature (250°C) on the physico-mechanical properties of rubber mortars

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The recovery and use of waste in the field of civil engineering, particularly in construction materials, is one of the most prominent solutions for preserving the environment. In order to evaluate the results obtained, it is necessary to study the evolution of the properties of these new materials in the different environments where they can live or be exposed, and why not develop an effective method of treatment of such materials for the possibility of their use even in the field of precast concrete.The objective of this work is to study the effect of the increase in temperature as a living environment or as a treatment on the physico-mechanical properties of a crumbled mortar, a potential source of many environmental and economic problems.Hence the screening and the possibility of using these new mortars with sufficient physico-mechanical properties for masonry and why not for prefabrication.The formulation of the mixturesbased on the substitution of dune sand by crumb rubber, at different weight contents 10, 20 and 30%. Consequently, prismatic specimens (4x4x16) cm3subjected to the temperature (250°C), with a speed of 2°C/min followed by a one-hour plateau at the target temperature then cooling to the ambient temperature.The results obtained show that the maximum mass loss is 5% for 30% substitution and that for 10% substitution the absorption by total immersion decreased by more than two thirds and the porosity accessible to water decreased by more than half. The compressive strength increases by 8.9% for 10% substitution and the minimum decrease in tensile strength by bending is at the same substitution of an order of 26.9%.Using the analysis of variance, the influence of the substitution of dune sand by rubber crumbs and of the rise in temperature to 250°C on the behavior of the mortar acquired. Patterns developed by response surface methodology were significant for all p-value substitutions <5%. The results of the numerical optimization showed that the best mixture couldobtained by replacing 30% of dune sand with rubber crumb and subjecting the hardened mortar obtained from this mixture to the temperature of 135°C.
Rocznik
Strony
47--60
Opis fizyczny
Bibliogr. 33 poz., rys., tab., wykr.
Twórcy
autor
  • University 8 May 1945 Guelma, Faculty of Science and Technology, Department of Civil Engineering and Hydraulics, LGCH, Guelma, Algeria
  • University 8 May 1945 Guelma, Faculty of Science and Technology, Department of Civil Engineering and Hydraulics, LGCH, Guelma, Algeria
  • Abdelhafid Boussouf Mila University Center, Faculty of Science and Technology, Department of Civil Engineering, Mila, LGCH Guelma, Algeria
  • University Mustefa Benboulaid Batna 2, Faculty of Technology, Department of Civil Engineering, Batna, Algeria
Bibliografia
  • 1. Ameri F., Shoaei P., Zahedi M., Karimzadeh M., Reza Musaeei H., Cheah C.B., Physico-mechanical properties and micromorphology of AAS mortars containing copper slag as fine aggregate at elevated temperature. Journal of Building Engineering 39 (2021) 102289.
  • 2. Latroch N., Benosman A.S., Bouhamou N-E., Senhadji Y., Mouli M., Physico-mechanical and thermal properties of composite mortars containing lightweight aggregates of expanded polyvinyl chloride. Construction and Building Materials 175 (2018) 77-87.
  • 3. Fadiel A.A.M., Abu-Lebdeh T., Munteanu I.S., Niculae E., Petrescu F.I.T., Mechanical Properties of Rubberized Concrete at Elevated Temperatures. Journal of Composite Science 7 (2023) 283 1-16.
  • 4. Guelmine L., Hadjab H., Benazzouk A., Effect of elevated temperatures on physical and mechanical properties of recycled rubber mortar. Construction and Building Materials 126 (2016) 77-85.
  • 5. Jawad A., Zhiguang Z., Ali M., Muwaffaq A.l., Ahmed Farouk D., Overview of Concrete Performance Made with Waste Rubber Tires: A Step toward Sustainable Concrete. Materials 15 (2022) 5518 1-31.
  • 6. https://doc-genie-civil.com/beton-prefabrique-considerations-generales-pdf/ acces on 28/10/2022.
  • 7. Swilam A., Tahwia A.M., Youssf O., Effect of Rubber Heat Treatment on Rubberized-Concrete Mechanical Performance. Journal of Composite Science 6 (2022) 290 1-13.
  • 8. Tian S., Zhang T., Li Y in.: Research on Modifier and Modified Process for Rubber-Particle Used in Rubberized Concrete for Road. Advances Materials Research 243–249 (2011) 4125–4130.
  • 9. Huang B., Shu X., Cao J., A two-staged surface treatment to improve properties of rubber modified cement composites. Construction and Building Materials 40 (2013) 270-274.
  • 10. Dong Q., Huang B., Shu X., Rubber modified concrete improved by chemically active coating and silane coupling agent. Construction and Building Materials 48 (2013) 116-123.
  • 11. Abdulla A.I., Ahmed S.H., Effect of Rubber Treated by Acidic Solution on Some Mechanical Properties of Rubberize Cement Mortar. Engineering and Technology Journal 29 (2011) 2793.
  • 12. Abd-Elaal E.S., Araby S., Mills J., Youssf O., Roychand R., Ma X., Zhuge Y., Gravina R.J., Novel approach to improve crumb rubber concrete strength using thermal treatment. Construction and Building Materials 229 (2019) 116901.
  • 13. Rocha P.F., Ferreira N.O., Pimenta F., Pereira N.B., Impacts of Prefabrication in the Building Construction Industry. Encyclopedia 3 (2023) 28–45.
  • 14. Cunha Pereira M., Soares A., Flores-Colen I., Ramôa Correia J., Influence of Exposure to Elevated Temperatures on the Physical and Mechanical Properties of Cementitious Thermal Mortars. Applied Sciences 10 (6) (2020) 2200 1-19.
  • 15. Wenxuan H., Ying W., Yaming Z., Wenzhong Z., Experimental study of high-temperature resistance of alkali-activated slag crushed aggregate mortar. Journal of Materials Research and Technology 23 (2023) 3961-3973.
  • 16. Aidoud A., Benouis A.H., Investigation of the Evolving Relationship between the Properties of Ordinary Concrete and High Performance Concrete. Journal of Materials and Environmental Sciences 9 (4) (2018) 1335-1342.
  • 17. Hesham M.F., Suzan A.A.M., Ahmed El Sayed A.E.B., Effect of Elevated Temperature on Concrete Containing Waste Tires Rubber. The Egyptian International Journal of Engineering Sciences and Technology 29 (2020) 1-13.
  • 18. Kaya M., Yıldırım Z.B., Köksal F., Beycioğlu A., Kasprzyk I., Evaluation and Multi-Objective Optimization of Lightweight Mortars Parameters at Elevated Temperature via Box–Behnken Optimization Approach. Materials 14 (2021) 7405 1-19.
  • 19. Dai X., Ren L., Gu X., Yilmaz E., Fang K., Jiang H., Strength Analysis and Optimization of Alkali Activated Slag Backfills Through Response Surface Methodology. Frontiers in Materials 9 (2022) 844608 1-11.
  • 20. Nehdi M., Khan A., Cementitious composites containing recycled tire rubber: an overview of engineering properties and potential applications. Cement Concrete Aggregate 23(1) (2001) 3-7.
  • 21. Price W., Smith E.D., Waste tire recycling: environmental benefits and commercial challenges. International Journal of Environmental Technology and Management 6 (3-4) (2006) 363-375.
  • 22. Boukour S., Benmalek M.L., Performance evaluation of a resinous cement mortar modified with crushed clay brick and tire rubber aggregate. Construction and Building Materials 120 (2016) 473-481.
  • 23. Aidoud A., Bencheick M., Boukour S., Valuation of Rubber Waste and Dune Sand: Mortar for Construction and Environmental Protection. Materials and Geoenvironment 68(1) (2021) 1-11.
  • 24. Indrajati I.N., Dewi I.R., Nurhajati D.W., Thermal properties of thermoplastic natural rubber reinforced by microfibrillar cellulose. Published under license by IOP Publishing Ltd IOP Conference Series: Materials Science and Engineering, Volume 432, The 1st Materials Research Society Indonesia Conference and Congress 8–12 October (2017), Yogyakarta, Indonésie.
  • 25. Benazzouk A., Douzane O., Langlet T., Mezzeb K., Roucoult J.M., Quéneudec M., Physico-mechanical properties and water absorption of cement composite containing shredded rubber wastes. Cement and Concrete Composites 29(10) (2007) 732-740.
  • 26. Fadiel A., Al Rifaie F., Abu-Lebdeh T., Fini E., Use of crumb rubber to improve thermal efficiency of cement-based materials. American Journal of Engineering and Applied Sciences 7(1) (2014) 1-11.
  • 27. Eiras J.N., Segovia F., Borrachero M.V., Monzó J., Bonilla M., Payá J., Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires. Materials and Design 59 (2014) 550-557.
  • 28. Siddique R., Naik T.R., Properties of concrete containing scrap-tire rubber–an overview. Waste Management 24(6) (2004) 563-569.
  • 29. Hernandez-Olivares F., Barluenga G., Fire performance of recycled rubber-filled high-strength concrete. Cement and Concrete Research 34(1) (2004) 109-117.
  • 30. Wrya A.A., Mohamed R.A., Muhammad A. Muhammad in.: Effect of High Temperature on Mechanical Properties of Rubberized Concrete Using Recycled Tire Rubber as Fine Aggregate Replacement. Engineering and Technology Journal 36 A 8 (2018) 906-913.
  • 31. Medine M., Trouzine H., De Aguiar J.B., Asroun A., Durability Properties of Five Years Aged Lightweight Concretes Containing Rubber Aggregates. Periodica Polytechnica Civil Engineering 62(2) (2018) 386–397.
  • 32. Bashar S.M., Lee Y.Y., Sani H., Michael L.S.H., Isyaka A., Amin A-F., Liew M.S., Noor Amila Wan A.Z., Effect of Elevated Temperature on the Compressive Strength and Durability Properties of Crumb Rubber Engineered Cementitious Composite. Materials 13 (2020) 1-17.
  • 33. Etli S., Cemalgil S., Onat O., Mid-Temperature Thermal Effects on Properties of Mortar Produced with Waste Rubber as Fine Aggregate. International Journal of Pure and Applied Sciences 4(1) (2018) 10-22.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24133c57-687e-4a35-8e69-107b106e61c1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.