PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Design and analysis of the ferrite air-gapped cores for a resonant inductor

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a three-air-gapped structure of a ferrite core for a resonant inductor is proposed. The electromagnetic and thermal field models are built using a 3D finite element method. Compared with the conventional signal-air-gapped structure of a ferrite core, the simulation and analysis results show that the proposed three-air-gapped ferrite core resonant inductor can reduce eddy-current loss and decrease temperature rise. In addition, the optimal position of air-gapped is presented.
Rocznik
Strony
579–--589
Opis fizyczny
Bibliogr. 17 poz., rys., tab., wz.
Twórcy
autor
  • College of Automation Engineering, Qingdao University Qingdao 266071, China
autor
  • College of Automation Engineering, Qingdao University Qingdao 266071, China
autor
  • College of Automation Engineering, Qingdao University Qingdao 266071, China
Bibliografia
  • [1] Wu W., Huang M., Blaabjerg F., Efficiency comparison between the LLCLand LCL-filters based single-phase grid-tied inverters, Archives of Electrical Engineering, vol. 63, no. 1, pp. 63–79 (2014).
  • [2] Kundu U., Yenduri K., Sensarma P., Accurate ZVS Analysis for Magnetic Design and Efficiency Improvement of Full-Bridge LLC Resonant Converter, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 1703–1706 (2017).
  • [3] Zong S., Luo H., LiW., Theoretical Evaluation of Stability Improvement Brought by Resonant Current Loop for Paralleled LLC Converters, IEEE Transactions on Industrial Electronics, vol. 62, no. 7, pp. 4170–4180 (2015).
  • [4] Seeman M.D., GaN Devices in Resonant LLC Converters: System-level considerations, IEEE Power Electronics Magazine, vol. 2, no. 1, pp. 36–41 (2015).
  • [5] Macrelli E., Romani A. et al., Modeling, Design, and Fabrication of High-Inductance Bond Wire Microtransformers With Toroidal Ferrite Core, IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5724–5737 (2015).
  • [6] Salas R.A., Pleite J., Equivalent Electrical Model of a Ferrite Core Inductor Excited by a SquareWaveform Including Saturation and Power Losses for Circuit Simulation, IEEE Transactions on magnetics, vol. 49, no. 7, pp. 4257–4260 (2013).
  • [7] Ahour J.N., Seyedtabah A., Gharehpetian G.B., On the accuracy of detailed model inductance matrix estimation for air core winding, Archives of Electrical Engineering, vol. 66, no. 4, pp. 787–799 (2017).
  • [8] Hilal A., Raulet M.A., Martin C., Sixdenier F., Power Loss Prediction and Precise Modeling of Magnetic Powder Components in DC–DC Power Converter Application, IEEE Transactions on Power Electronics, vol. 30, no. 4, pp. 2232–2238 (2015).
  • [9] Gao Y. et al., Loss reduction of reactor with grain-oriented silicon steel plates, IEEE Transaction on Magnetics, vol. 49, no. 5, pp. 1973–1976 (2013).
  • [10] Salas R.A., Pleite J., Simulation of the Saturation and Air-Gap Effects in a POT Ferrite Core With a 2-D Finite Element Model, IEEE Transactions on Magnetics, vol. 47, no. 10, pp. 4135–4138 (2011).
  • [11] Kurita N., Onda K., Nakanoue K., Inagaki K., Loss estimation method for three-phase AC reactors of two types of structures using amorphous wound cores in 400-kVA UPS, IEEE Transactions on Power Electronics, vol. 29, no. 7, pp. 3657–3688 (2014).
  • [12] Tomczuk B., Babczyk K., Calculation of the self- and mutual inductances and 3-D magnetic fields of chokes with air gaps in core, Electrical Engineering (Archiv fur Elektrotechnik), Springer-Verlag, Berlin, vol. 83, pp. 41–46 (2001).
  • [13] Macrelli E. et al., Modeling, Design, and Fabrication of High-Inductance Bond Wire MicrotransformersWith Toroidal Ferrite Core, IEEE Transactions on Power Electronics, vol. 30, no. 10, pp. 5724–5737 (2015).
  • [14] Tsili M.A., Amoiralis E.I., Kladas A.G., Souflaris A.T., Power transformer thermal analysis by using an advanced coupled 3D heat transfer and fluid flow FEM model, International Journal of Thermal Sciences, vol. 53, pp. 188–201 (2012).
  • [15] Zhiguang C., Takahashi N., Forghani B. et al., Electromagnetic and Thermal Field Modeling and Application in Electrical Engineering, Science China Press (2009).
  • [16] Hayt W.H., Buck J.A., Engineering Electromagnetics, 7th Edition, the McGraw-Hill Companies, Inc. (2006).
  • [17] Tomczuk B.Z. et al., Electromagnetic and temperature 3-D fields for the modular transformers heating under high-frequency operation, IEEE Trans. Magn., vol. 50, no. 2 (2014).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-240dedcc-307c-4383-bd24-5d6711ec69fd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.