PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Internal Micro-electrolysis Using Fe/C Material for Pre-Treatment of Concentrated Coking Wastewater

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Untreated coking effluent presents a great challenge for sustainable development of the steel industry and environment preservation. In this study, an internal micro-electrolysis method using Fe/C materials was employed for pretreatment of real coking wastewater with high mass concentration. The Fe/C materials were prepared by Fe powder and graphite powder; and the characteristics of surface morphology, structure, composition of the synthesized materials were examined by Scanning electron microscopy (SEM), X-ray diffraction (XRD) and Energy Dispersive X-ray Spectroscopy (EDS). The effects of factors namely dosage of Fe/C material, treatment time, initial pH and temperature were investigated via chemical oxygen demand (COD) and phenol removal efficiencies. Optimal treatment efficiency was attained at pH of 4, Fe/C dosage of 40 g/L, treatment time of 360 minutes and temperature of 25°C. After the internal electrolysis process, the values of COD, BOD5, and phenol of the wastewater were 6500, 4850 and 0.1 mg/L, respectively.
Rocznik
Strony
41--46
Opis fizyczny
Bibliogr. 20 poz., rys., tab., wz.
Twórcy
  • Institute of Chemistry and Materials, 17 Hoang Sam, Cau Giay, Hanoi, Vietnam
autor
  • Thai Nguyen University of Education, Thai Nguyen University, 20 Luong Ngoc Quyen, Thai Nguyen City, Vietnam
autor
  • Institute of Chemistry and Materials, 17 Hoang Sam, Cau Giay, Hanoi, Vietnam
  • NTT Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
  • Center of Excellence for Green Energy and Environmental Nanomaterials, Nguyen Tat Thanh University, Ho Chi Minh City 700000, Vietnam
Bibliografia
  • 1. Liu, L., He, D., Pan, F., Huang, R., Lin, H. & Zhang, X. (2020). Comparative study on treatment of methylene blue dye wastewater by different internal electrolysis systems and COD removal kinetics, thermodynamics and mechanism. Chemosphere, 238, 124671. DOI: 10.1016/j.chemosphere.2019.124671.
  • 2. Kang, M., Chen, Q., Li, J., Liu, M. & Weng, Y. (2019). Preparation and study of a new type of Fe–C microelectrolysis filler in oil-bearing ballast water treatment. Environ. Sci. Pollut. Res., 26, 10673–10684. DOI:10.1007/s11356-019-04480-z.
  • 3. Zheng, X., Jin, M., Zhou, X., Chen, W., Lu, D., Zhang, Y. & Shao, X. (2019). Enhanced removal mechanism of iron carbon micro-electrolysis constructed wetland on C, N, and P in salty permitted effluent of wastewater treatment plant. Sci. The Total Environ., 649, 21–30. DOI: 10.1016/j.scitotenv.2018.08.195.
  • 4. Zhang, L., Yue, Q., Yang, K., Zhao, P. & Gao, B. (2018). Analysis of extracellular polymeric substances (EPS) and ciprofl oxacin-degrading microbial community in the combined Fe-C micro-electrolysis-UBAF process for the elimination of high-level ciprofl oxacin. Chemosphere, 193, 645–654. DOI: 10.1016/j.chemosphere.2017.11.056.
  • 5. Wang, Y., Wu, X., Yi, J., Chen, L., Lan, T. & Dai, J. (2018). Pretreatment of printing and dyeing wastewater by Fe/C micro-electrolysis combined with H2O2 process. Water Sci. Technol., 2017(3), 707–717. DOI:10.2166/wst.2018.244.
  • 6. Ma, W., Han, Y., Xu, C., Han, H., Ma, W., Zhu, H., Li, K. & Wang, D. (2018). Enhanced degradation of phenolic compounds in coal gasifi cation wastewater by a novel integration of micro-electrolysis with biological reactor (MEBR) under the micro-oxygen condition. Biores. Technol., 251, 303–310, DOI: 10.1016/j.biortech.2017.12.042.
  • 7. Liu, M., Wang, L., Xiao, X. & He, Z. (2018). Fe/C micro-electrolysis and Fenton oxidation process for the removal of recalcitrant colored pollutants from mid-stage pulping effluent. J. Biores. Bioproducts, Vol 3, 118–122 Pages, DOI: 10.21967/JBB.V3I3.56.
  • 8. Ji, Q., Tabassum, S., Hena, S., Silva, C.G., Yu, G. & Zhang, Z. (2016). A review on the coal gasifi cation wastewater treatment technologies: past, present and future outlook. J. Cleaner Product., 126, 38–55, DOI: 10.1016/j.jclepro.2016.02.147.
  • 9. Zhao, Q. & Liu, Y. (2016). State of the art of biological processes for coal gasification wastewater treatment. Biotech. Adv., 34, 1064–1072. DOI: 10.1016/j.biotechadv.2016.06.005.
  • 10. Xu, L., Wang, J., Zhang, X., Hou, D. & Yu, Y. (2015). Development of a novel integrated membrane system incorporated with an activated coke adsorption unit for advanced coal gasification wastewater treatment. Colloids Surf. A: Phys. Eng. Aspects, 484, 99–107. DOI: 10.1016/j.colsurfa.2015.07.062.
  • 11. Li, P., Ailijiang, N., Cao, X., Lei, T., Liang, P., Zhang, X., Huang, X. & Teng, J. (2015). Pretreatment of coal gasification wastewater by adsorption using activated carbons and activated coke. Colloids Surf. A: Phys. Eng., Aspects , 482, 177–183. DOI: 10.1016/j.colsurfa.2015.05.006.
  • 12. Huang, L., Sun, G., Yang, T., Zhang, B., He, Y. & Wang, X. (2013). A preliminary study of anaerobic treatment coupled with micro-electrolysis for anthraquinone dye wastewater. Desalination, 309, 91–96. DOI: 10.1016/j.desal.2012.09.029.
  • 13. Fan, J.H. & Ma, L.M. (2009). The pretreatment by the Fe–Cu process for enhancing biological degradability of the mixed wastewater. J. Hazard. Mater., 164, 1392–1397. DOI: 10.1016/j.jhazmat.2008.09.115.
  • 14. Yin, X., Bian, W. & Shi, J. (2009). 4-chlorophenol degradation by pulsed high voltage discharge coupling internal electrolysis. J. Hazard. Mater., 166, 1474–1479. DOI: 10.1016/j.jhazmat.2008.12.094.
  • 15. Huong, D.T., Nguyen, V.T., Ha, X.L., Nguyen, H.L., Thi, Duong, T.T., Nguyen, D.Ch. & Nguyen, H.-T., Thi. (2020). Enhanced Degradation of Phenolic Compounds in Coal Gasification Wastewater by Methods of Microelectrolysis Fe-C and Anaerobic-Anoxic-Oxic Moving Bed Biofilm Reactor (A2O-MBBR). Processes, 8, 1258. DOI: 10.3390/pr8101258.
  • 16. Guan, X., Xu, X., Lu, M. & Li, H. (2012). Pretreatment of Oil Shale Retort Wastewater by Acidification and Ferric-Carbon Micro-Electrolysis. Energy Procedia, 17, 1655–1661. DOI: 10.1016/j.egypro.2012.02.294.
  • 17. Ying, D., Peng, J., Li, K., Wang, Y., Pan, S. & Jia, J. (2013). Dual-cell reduction and group effect in an internal microelectrolysis reactor. Electrochimica Acta, 89, 861–867. DOI: 10.1016/j.electacta.2012.10.158.
  • 18. Zhu, Q., Guo, S., Guo, C., Dai, D., Jiao, X., Ma, T. & Chen, J. (2014). Stability of Fe–C micro-electrolysis and biological process in treating ultra-high concentration organic wastewater. Chem. Engin. J., 255, 535–540. DOI: 10.1016/j.cej.2014.05.138.
  • 19. Lai, B., Zhang, Y., Chen, Z., Yang, P., Zhou, Y. & Wang, J. (2014). Removal of p-nitrophenol (PNP) in aqueous solution by the micron-scale iron–copper (Fe/Cu) bimetallic particles. Appl. Catal. B: Environ., 144, 816–830. DOI:10.1016/j.apcatb.2013.08.020.
  • 20. Chemical oxygen demand (COD), (SMEWW 5220D:2012: 2008) Biochemical oxygen demand (BOD) (ISO 5815-2 : 2003); Phenol (SMEWW 5530C:2012), Cyanide (SMEWW-4500CN–), NH4 + (C&E:2012, ISO 14911 : 1998)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-24018711-d3ea-4ea3-9e92-9d944fe73c59
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.