PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Osteointegration technology in long bone defect reconstruction: experimental study

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The purpose of this experimental study was to evaluate the osteointegration of a bioactive 3D-cylindrical titanium-alloy implant (bone-graft substitute) for tibial shaft defect reconstruction. Methods: An experimental study was done in 7 mongrel dogs. Tibial shaft defect was repaired using an original titanium-alloy (Ti6Al4V) cellular cylindrical implant. with a bioactive layer of hydroxyapatite by anode microarc oxidation. Histological study (hematoxylin-eosin stain and immunohistological reaction using ostepontin polyclonal antibodies) and scanning electron microscopy (electron probe X-ray microanalysis for calcium and phosphorus saturation in the tissue matrix) were applied to assess bone tissue regeneration. Results: Experimental study revealed osteoconduction starting from the endosteum of bone fragments adjacent to the bone defect and developed to the central part of the implant. In 4 weeks, graft osteointegration was achieved in all animals. Implant cells were filled with spongy bone tissue and the graft external surface was covered with a connective tissue structures similar to the periosteum ones. Conclusions: Cellular titanium bone-graft substitute with bioactive coatings placed into bone defect stimulates reparative osteogenesis and graft osteointegration.
Rocznik
Strony
85--91
Opis fizyczny
Bibliogr. 25 poz., fot., rys., tab.
Twórcy
  • Ilizarov National Medical Research Center for Traumatology and Orthopedics, Kurgan, Russia
  • Ilizarov National Medical Research Center for Traumatology and Orthopedics, Kurgan, Russia
  • Ilizarov National Medical Research Center for Traumatology and Orthopedics, Kurgan, Russia
  • Ilizarov National Medical Research Center for Traumatology and Orthopedics, Kurgan, Russia
Bibliografia
  • [1] GEETHA M., SINGH A.K., ASOKAMANI R., GOGIA A.K., Ti-based biomaterials, the ultimate choice for orthopaedic implants. A review, Prag. Mater Sci., 2009, 54, 397–425.
  • [2] GUARINO V., CAUSA F., AMBROSIO L., Bioactive scaffolds for bone and ligament tissue, Expert. Rev. Med. Devices, 2007, 4, 405–418.
  • [3] NOYAMA Y., MIURA T., ISHIMOTO T., ITAYA T., NIINOMI M., NAKANO T., Bone loss and reduced bone quality of the human femur after total hip arthroplasty under stress-shielding effects by titanium-based implant, Mater. Trans., 2012, 53, 565–570.
  • [4] DOROZHKIN S., Calcium Orthophosphate-Based Bioceramics, Materials, 2013, 6, 3840–3942.
  • [5] ZHANG J., LIU W., SCHNITZLER V., TANCRET F., BOULER J.-M., Calcium-phosphate cements for bone substitution: chemistry, handling and mechanical properties, Acta Biomater., 2014, 10, 1035–1049.
  • [6] CHAN O., COATHUP M., NESBITT A., HO C.Y., HING K., BUCKLAND T., CAMPION C., BLUNN G., The effects of microporosity on osteoinduction of calcium phosphate bone graft substitute materials, Acta Biomater., 2012, 8, 2788–2794.
  • [7] LIU S., LIU Y., JIANG L., LI Z., LEE S., LIU C., WANG J., ZHANG J., Recombinant human BMP-2 accelerates the migration of bone marrow mesenchymal stem cells via the CDC42/PAK1/LIMK1 pathway in vitro and in vivo, Biomater. Sci., 2018, 7, 362–372.
  • [8] TANNOURY C.A., AN H.S., Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery, Spine J., 2014, 14, 552–559.
  • [9] STEIB J.-P., BOUCHAIB J., WALTER A., SHULLER S., CHARLES P., Could an osteoinductor result in degeneration of a neurofibroma in NF 1?, Eur. Spine J., 2010, 19 (Suppl. 2), S220–S225.
  • [10] ZWEYMULLER K.A., Bony ongrowth on the surface of HA-coated femoral implants: an x-ray analysis, Z. Orthop. Unfall., 2012, 150 (1), 27–31.
  • [11] POPKOV A.V., GORBACH E.N., KONONOVICH N.A., POPKOV D.A., TVERDOKHLEBOV S.I., SHESTERIKOV E.V., Bioactivity and osteointegration of hydroxyapatite-coated stainless steel and titanium wires used for intramedullary osteosynthesis, Strategies in Trauma and Limb Reconstruction, 2017, 12 (2), 107–113.
  • [12] BOLBASOV E.N., POPKOV D.A., KONONOVICH N.A., GORBACH E.N., KHLUSOV I.A., GOLOVKIN A.S., STANKEVICH K.S., IGNATOV V.P., BOUZNIK V.M., ANISSIMOV Y.G., TVERDOKHLEBOV S.I., POPKOV A.V., Flexible intramedullary nails for limb lengthening: a comprehensive comparative study of three nails types, Biomed. Mater., 2019, 4 (2), 025005.
  • [13] BOLBASOV E.N., POPKOV A.V., POPKOV D.A., GORBACH E.N., KHLUSOV I.A., GOLOVKIN A.S., SINEV A., BOUZNIK V.M., TVERDOKHLEBOV S.I., ANISSIMOV Y.G., Osteoinductive composite coatings for flexible intramedullary nails, Materials Science and Engineering C, 2017, 75, 207–220.
  • [14] TIMERCAN A., BRAILOVSKI V., PETIT Y., LUSSIER B., SEGUIN B., Personalized 3D-printed endoprostheses for limb sparing in dogs: Modeling and in vitro testing, Med. Eng. Phys., 2019, 71, 17–29.
  • [15] POPKOV A.V., POPKOV D.A., KONONOVICH N.A., TVERDOKHLEBOV S.I., Cellular cylindrical bioactive implant to replace circular defects of tubular bones, Patent No. 171823 dated 16.05.2017. Application No. 2016152351/14(083849). Priority as of 28.12.2016.
  • [16] GOODSHIP A.E., KENWRIGHT J., The influence of induced micromovement upon the healing of experimental tibial fractures, J. Bone Jt. Surg. Br. Vol., 1985 Aug., 67 (4), 650–655.
  • [17] MERLOZ P., MAUREL N., MARCHARD D., LAVASTE F., BARNOLE J., FAURE C., BUTEL J., Three-dimensional rigidity of the Ilizarov external fixator (original and modified) implanted at the femur. Experimental study and clinical deductions, Rev. Chir. Orthop. Reparatrice Appar. Mot., 1991, 77 (2), 65–76.
  • [18] SILANTIEVA T.A., GORBACH E.N., Preparing samples of biological tissues for a study using a scanning electronic microscope with camphene, Fundamental Studies, 2015, 22 (2), 4919–4923.
  • [19] OOSTENBROEK H.J., BRAND R., VAN ROERMUND P.M., CASTELEIN R.M., Paediatric lower limb deformity correction using the Ilizarov technique: a statistical analysis of factors affecting the complication rate, J. Pediatr. Orthop. B., 2014, 23 (1), 26–31.
  • [20] HETTICH G., SCHIERJOTT R.A., EPPLE M., GBURECK U., HEINEMANN S., MOZAffARI-JOVEIN H., GRUPP T.M., Calcium Phosphate Bone Graft Substitutes with High Mechanical Load Capacity and High Degree of Interconnecting Porosity, Materials, 2019, 12, 3471.
  • [21] BOHNER M., BAROUD G., BERNSTEIN A., DÖBELIN N., GALEA L., HESSE B., HEUBERGER R., MEILLE S., MICHEL P., VON RECHENBERG B. et al., Characterization and distribution of mechanically competent mineralized tissue in micropores of β-tricalcium phosphate bone substitutes, Mater. Today, 2017, 20, 106–115.
  • [22] BARRERE F., VAN DER VALK C.M., DALMEIJER R.A. et al., Osteogenecity of octacalcium phosphate coatings applied on porous metal implants, J. Biomed. Mater Res., 2003, 66(A), 779–788.
  • [23] YUAN H., VAN DEN DOEL M., LI S.H. et al., A comparison of the osteoinductive potential of two calcium phosphate ceramics implanted intramuscularly in goats, J. Mater. Sci. Mater. Med., 2002, 13, 1271–1275.
  • [24] CAPLAN A., All MSCs are pericytes, Cell. Stem. Cell., 2008, 3(3), 229–230.
  • [25] SIOW R.C., MALLAWAARACHCHI C.M., WEISSBERG P.L., Migration of adventitial myofibroblasts following vascular balloon injury: insights from in vivo gene transfer to rat carotid arteries, Cardiovasc. Res., 2003, 59, 212–221.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23fee209-bf18-4211-be34-7da73c9d2d3e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.