PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Efficiency optimisation of blade shape in steam and ORC turbines

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to direct constrained optimisation of blading systems of large power and small power turbines so as to increase their internal efficiency. The optimisation is carried out using hybrid stochastic-deterministic methods such as a combination of a direct search method of Hooke-Jeeves and simulated annealing or a combination of a bat algorithm and simplex method of Nelder-Mead. Among free shape parameters are blade number and stagger angle, stacking blade line parameters and blade section (profile) parameters. One practical example of efficiency optimisation of turbine blading systems is modification of low load profiles PLK-R2 for high pressure (HP) stages of large power steam turbines. Another optimised geometry is that of an ORC radial-axial cogeneration turbine of 50 kWe. Up to 1% efficiency increase can easily be obtained from optimization of HP blade profiles, especially by making the rotor blade more aft-loaded and reducing the intensity of endwall flows. Almost 2% efficiency rise was obtained for the optimized 50 kWe ORC turbine due to flow improvement at the suction side of the blade.
Rocznik
Strony
553--564
Opis fizyczny
Bibliogr. 28 poz., il. kolor., wykr.
Twórcy
autor
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
autor
  • The Szewalski Institute of Fluid Flow Machinery, Polish Academy of Sciences, Gdańsk, Poland
Bibliografia
  • [1] Chmielniak T., Łukowicz H., Kochaniewicz A.: Kierunki wzrostu sprawności współczesnych bloków energetycznych, Rynek Energii, 6, 79, 14-20, 2008.
  • [2] Pierret S., Van Den Braembussche R.: Turbo-machinery blade design using a Navier-Stokes solver and artificial neural network, ASME, Paper 98-GT-4, 1998.
  • [3] Lampart P., Hirt L.: Complex multidisciplinary optimisation of turbine blading systems, Arch. Mech., 64, 2, 153-175, 2012.
  • [4] Denton J.D.: Loss mechanisms in turbomachines, ASME J. Turbomachinery, 115, 621-656, 1993.
  • [5] Lampart P., Yershov S., Rusanov A.: Increasing flow efficiency of high-pressure and low-pressure steam turbine stages from numerical optimisation of 3D blading, Engineering Optimisation, 37, 2, 145-166, 2005.
  • [6] Arabnia, M., Ghaly, W.: On the use of blades stagger and stacking in turbine stage optimization, ASME, Paper GT2010-23399, 2010.
  • [7] Asgarshamsi A., Hajilouy-Benisi A., Assempour A., Pourfarzaneh A.: Multi-point optimization of lean and sweep angles for stator and rotor blades of an axial turbine, ASME, Paper GT2014-27016, 2014.
  • [8] Yershov S., Rusanov A.: The application package FlowER for the calculation of 3D viscous flows through multi-stage turbomachinery, Certificate of state registration of copyright, Ukrainian state agency of copyright and related rights, February 19, 1996.
  • [9] ANSYS CFD Software, https://www.simutechgroup.com/ansys-software.
  • [10] Menter F.R.: Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 8, 1598-1605, 1994.
  • [11] Dejcz M.,E., Filippov G.A., Lazarev L.Ja.: Atlas of axial turbine cascade profiles, Machine Construction, Moscow (in Russian), 1965.
  • [12] Bezier curve, http://www.wikipedia.org/Bezier curve.
  • [13] Hooke R., Jeeves T.A.: Direct search solution of numerical and statistical problems, J. Assoc. Computing Machinery, 8, 2, 212-229, 1961.
  • [14] Nelder J.A., Mead R.: A simplex method for function minimisation, Computer J., 7, 1, 308-313, 1965.
  • [15] Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley Longman Publishing Co. Inc., Boston, MA, USA, 1989.
  • [16] Kirkpatrick S., Gelatt C., Vecchi M.: Optimisation by simulated annealing, Science, New Series, 220(4598), 671-680, 1983.
  • [17] Clerc M.: Particle Swarm Optimization, John Wiley & Sons, 2006.
  • [18] Yang X. S.: A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization, Studies in Computational Intelligence, 284, 65-74, 2010.
  • [19] Chelouah R., Siarry P.: A hybrid method combining continuous tabu search and Nelder-Mead Simplex algorithms for the global optimisation of multiminima functions, Europ. J. Operational Research, 161, 636-654, 2005.
  • [20] Mahmuddin M., Yousof Y.: A Hybrid Simplex Search and Bio-Inspired Algorithm for Faster Convergence, Proc. Int. Conf. on Machine Learning and Computing, Perth, Australia, 203-207, 2009.
  • [21] Pardalos P. M., Romelin H. E.: Handbook of global optimization, Vol. 2, Nonconvex optimization and its application, Kluwer Academic Publishers, Boston/Doordrecht/London, 2002.
  • [22] Lampart P.: Investigation of endwall flows and losses in axial turbines, Part II. The effect of geometrical and flow parameters, J. Theoret. Appl. Mech., 47, 4, 829-853, 2009.
  • [23] Wajs J., Mikielewicz D., Bajor M., Kneba Z.: Experimental investigation of domestic micro-CHP based on the gas boiler fitted with ORC module, Arch. Ther- modynamics, 37, 3, 79-93, 2016.
  • [24] Borsukiewicz-Gozdur A.: Influence of the ORC power plant heat recuperation solutions on effectiveness of the supplied waste heat utilization, Arch. Thermodynamics, 31, 4, 11-124, 2010.
  • [25] Kiciński J., Żywica G.: Steam Microturbines in Distributed Cogeneration, Springer International Publishing, 2015.
  • [26] Klonowicz P., Surwiło J., Witanowski Ł., Suchocki T.K., Kozanecki Z., Lampart P.: Design and numerical study of turbines operating with MDM as working fluid, Open Engineering, 5, 1, 485-499, 2015.
  • [27] Lemmon E., Huber M., McLinden M.: REFPROP, National Institute of Standards and Technology, 2010.
  • [28] Mueller L., Alsalihi Z., Verstraete T.: Multidisciplinary Optimization of a Turbocharger Radial Turbine, ASME J. Turbomachinery, 135, 2, 021022, 2012.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23fbd0cb-1821-48a3-9fb3-9d7dad102610
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.