Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A total labeling of a graph G = (V,E) is said to be local total antimagic if it is a bijection f : V ∪E → {1, . . . , |V |+|E|} such that adjacent vertices, adjacent edges, and pairs of an incident vertex and edge have distinct induced weights where the induced weight of a vertex v is wf (v) = ∑ f(e) with e ranging over all the edges incident to v, and the induced weight of an edge uv is wf (uv) = f(u)+f(v). The local total antimagic chromatic number of G, denoted by χlt(G), is the minimum number of distinct induced vertex and edge weights over all local total antimagic labelings of G. In this paper, we first obtain general lower and upper bounds for χlt(G) and sufficient conditions to construct a graph H with k pendant edges and χlt(H) ∈ {Δ(H) + 1, k + 1}. We then completely characterize graphs G with χlt(G) = 3. Many families of (disconnected) graphs H with k pendant edges and χlt(H) ∈ {Δ(H) + 1, k + 1} are also obtained.
Czasopismo
Rocznik
Tom
Strony
199--225
Opis fizyczny
Bibliogr. 16 poz.
Twórcy
autor
- 77D, Jalan Subuh, 85000, Johor, Malaysia
Bibliografia
- [1] I.H. Agustin, M. Hasan, Dafik, R. Alfarisi, R.M. Prihandini, Local edge antimagic coloring of graphs, Far East J. Math. Sci. 102 (2017), 1925–1941.
- [2] K. Appel, W. Haken, Every map is four colourable, Bull. Am. Math. Soc. 82 (1976), 711–712.
- [3] S. Arumugam, K. Premalatha, M. Bača, A. Semaničová-Feňovčíková, Local antimagic vertex coloring of a graph, Graphs Combin. 33 (2017), 275–285.
- [4] M. Behzad, Graphs and their chromatic numbers, PhD Thesis, Michigan State University, 1965.
- [5] J. Bensmail, M. Senhaji, K. Szabo Lyngsie, On a combination of the 1–2-3 conjecture and the antimagic labelling conjecture, Discrete Math. Theoret. Comput. Sci. 19 (2017), no. 1, #22.
- [6] J. Geetha, N. Narayanan, K. Somasundaram, Total colorings-a survey, AKCE Int. J. Graphs Comb. 20 (2023), no. 3.
- [7] J. Haslegrave, Proof of a local antimagic conjecture, Discret. Math. Theor. Comput. Sci. 20 (2018), no. 1.
- [8] G.C. Lau, W.C. Shiu, On join product and local antimagic chromatic number of regular graphs, Acta Math. Hungar. 169 (2023), no. 1, 108–133.
- [9] G.C. Lau, W.C. Shiu, On local antimagic chromatic number of lexicographic product graphs, Acta Math. Hungar. 169 (2023), no. 1, 158–170.
- [10] G.C. Lau, W.C. Shiu, On local antimagic total labeling of complete graphs amalgamation, Opuscula Math. 43 (2023), no. 3, 429–453.
- [11] G.C. Lau, H.K. Ng, W.C. Shiu, Affirmative solutions on local antimagic chromatic number, Graphs Combin. 36 (2020), 1337–1354.
- [12] G.C. Lau, W.C. Shiu, H.K. Ng, On local antimagic chromatic number of cycle-related join graphs, Discuss. Math. Graph Theory 4 (2021), no. 1.
- [13] G.C. Lau, K. Schaffer, W.C. Shiu, Every graph is local antimagic total and its applications, Opuscula Math. 43 (2023), no. 6, 841–864.
- [14] V. Sandhiya, M. Nalliah, Local total antimagic chromatic number of graphs, Heliyon 9 (2023), e17761.
- [15] V. Sandhiya, M. Nalliah, private communication.
- [16] B. Toft, R. Wilson, A brief history of edge-colorings – with personal reminiscences, Discrete Math. Lett. 6 (2021), 38–46.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23f4e7ff-4195-44d7-9492-d51f46f0a406
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.