Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Peridotite xenoliths from Scania (S Sweden), brought to the surface by Mesozoic basanitic magmas, provide insights into the lithospheric mantle underlying the East European Craton. During their ascent, some of the entrained xenoliths were infiltrated by a Si-undersaturated melt. The infiltration triggered orthopyroxene dissolution and the formation of finegrained olivine, clinopyroxene and Si-rich glasses (trachytic/trachydacitic and dacitic). The latter interacted with clinopyroxene and/or spinel creating spongy rims of various thicknesses (from few to hundreds of μm). The reactions varied in intensity and effect depending on the distance from the xenolith margin and the duration of the reaction time. At the outer parts of xenoliths, intense reactions dissolved orthopyroxene entirely, forming spongy rims on spinel and clinopyroxene, while inner sections showed limited reactions, primarily between mafic melts and orthopyroxene. The local reheating and melting of fine-grained aggregates during the ascent of xenoliths resulted in the formation of a hydrous, high-Mg, glass-like phase.
Wydawca
Czasopismo
Rocznik
Tom
Strony
4--12
Opis fizyczny
Bibliogr. [31] poz., rys., tab., wykr.
Twórcy
autor
- Institute of Geological Sciences, Polish Academy of Sciences, Podwale 75, 50-449 Wrocław, Poland
autor
- Institute of Geological Sciences, University of Wrocław, Pl. M. Borna 9, 50-204 Wrocław, Poland
autor
- Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
autor
- Department of Lithospheric Research, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
autor
- Department of Geology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
Bibliografia
- Artemieva, I. M. (2003). Lithospheric structure, composition, and thermal regime of the East European Craton: Implications for the subsidence of the Russian platform. Earth and Planetary Science Letters, 213(3–4), 431– 446. https://doi.org/10.1016/S0012-821X(03)00327-3
- Asch, K. (2005). IGME 5000: 1 : 5 Million International Geological Map of Europe and Adjacent Areas - final version for the internet. BGR, Hannover.
- Babuška, V., & Plomerová, J. (2004). The Sorgenfrei–Tornquist Zone as the mantle edge of Baltica lithosphere: new evidence from three-dimensional seismic anisotropy. Terra Nova, 16(5), 243–249. https://doi.org/10.1111/ j.1365-3121.2004.00558.x
- Bergelin, I., Obst, K., Söderlund, U., Larsson, K., & Johansson, L. (2011). Mesozoic rift magmatism in the North Sea region: 40Ar/39Ar geochronology of Scanian basalts and geochemical constraints. International Journal of Earth Sciences, 100(4), 787–804. https://doi. org/10.1007/s00531-010-0516-3
- Bingen, B., Viola, G., Möller, C., Vander Auwera, J., Laurent, A., & Yi, K. (2021). The Sveconorwegian orogeny. Gondwana Research, 90, 273–313. https://doi. org/10.1016/j.gr.2020.10.014
- Brey, G. P., Köhler, T., & Nickel, K. G. (1990). Geothermobarometry in Four-phase Lherzolites I. Experimental Results from 10 to 60kb. Journal of Petrology, 31(6), 1313–1352. https://doi.org/10.1093/petrology/31.6.1313
- Carpenter, R. L., Edgar, A. D., & Thibault, Y. (2002). Origin of spongy textures in clinopyroxene and spinel from mantle xenoliths, Hessian Depression, Germany. Mineralogy and Petrology, 74(2), 149–162. https:// doi.org/10.1007/s007100200002
- Coltorti, M., Bonadiman, C., Hinton, R. W., Siena, F., & Upton, B. G. J. (1999). Carbonatite Metasomatism of the Oceanic Upper Mantle: Evidence from Clinopyroxenes and Glasses in Ultramafic Xenoliths of Grande Comore, Indian Ocean. Journal of Petrology, 40(1), 133–165. https://doi.org/10.1093/ petroj/40.1.133
- Deer, W. A., Howie, R. A., & Zussman, J. (1993). An Introduction to the Rock-Forming Minerals. Longman Scientific & Technical.
- Demouchy, S., Jacobsen, S., Gaillard, F., & Stern, C. (2006). Rapid magma ascent recorded by water diffusion profiles in mantle olivine. Geology, 34, 429–432. https://doi.org/10.1130/G22386.1
- Erlström, M. (2009). Tectonic evolution and geological framework of Scania. A review of interpretations and geological models. SGU-report 2009:10
- Falus, G., Szabó, C., & Vaselli, O. (2000). Mantle upwelling within the Pannonian Basin: evidence from xenolith lithology and mineral chemistry. Terra Nova, 12(6), 295–302. https://doi.org/10.1046/j.1365- 3121.2000.00313.x
- Geological Survey of Sweden Digital Database. (2018) Https:// Www.Sgu.Se/En/Products/Geological-Data/.
- Hirose, K., & Kawamoto, T. (1995). Hydrous partial melting of lherzolite at 1 GPa: The effect of H2O on the genesis of basaltic magmas. Earth and Planetary Science Letters, 133(3), 463–473. https://doi.org/10.1016/0012- 821X(95)00096-U
- Ionov, D. A., Hofmann, A. W., & Shimizu, N. (1994). Metasomatism-induced Melting in Mantle Xenoliths from Mongolia. Journal of Petrology, 35(3), 753–785. https://doi.org/10.1093/petrology/35.3.753
- Johansson, Å., Bogdanova, S., & Čečys, A. (2006). A revised geochronology for the Blekinge Province, southern Sweden. GFF, 128(4), 287–302. https://doi. org/10.1080/11035890601284287
- Kelemen, P. B. (1990). Reaction Between Ultramafic Rock and Fractionating Basaltic Magma I. Phase Relations, the Origin of Calc-alkaline Magma Series, and the Formation of Discordant Dunite. Journal of Petrology, 31(1), 51–98. https://doi.org/10.1093/ petrology/31.1.51
- Le Maitre, R. W., Bateman, P., Dudek, A., Keller, J., Lameyre Le Bas, M. J., Sabine, P. A., Schmid, R., Sorensen, H., Streckeisen, A., Woolley, A. R., & Zanettin, B. (1989). A Classification of Igneous Rocks and Glossary of Terms (p. 193). Blackwell.
- Lu, J., Zheng, J., Griffin, W. L., O’Reilly, S. Y., & Pearson, N. J. (2015). Microscale effects of melt infiltration into the lithospheric mantle: Peridotite xenoliths from Xilong, South China. Lithos, 232, 111–123. https://doi. org/10.1016/j.lithos.2015.06.013
- Marchev, P., Arai, S., Vaselli, O., Costa, F., Zanetti, A., & Downes, H. (2017). Metasomatic Reaction Phenomena from Entrainment to Surface Cooling: Evidence from Mantle Peridotite Xenoliths from Bulgaria. Journal of Petrology, 58(3), 599–640. https://doi.org/10.1093/ petrology/egx028
- Matusiak-Malek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Klügel, A. (2014). Two contrasting lithologies in off-rift subcontinental lithospheric mantle beneath central Europec-the Krzeniów (SW Poland) case study. Journal of Petrology, 55(9), 1799– 1828. https://doi.org/10.1093/petrology/egu042
- Mikrut, J., Matusiak-Małek, M., Puziewicz, J., Ntaflos, T., Grégoire, M., Benoit, M., & Johansson, L. (2019). Heterogeneous mantle beneath S Sweden-evidences from peridotitic xenoliths. In Geophysical Research Abstracts 21, EGU2019-15595
- Pan, S., Zheng, J., Yin, Z., Griffin, W. L., Xia, M., Lin, A., & Zhang, H. (2018). Spongy texture in mantle clinopyroxene records decompression-induced melting. Lithos, 320–321, 144–154. https://doi.org/10.1016/j. lithos.2018.08.035
- Rehfeldt, T., Obst, K., & Johansson, L. (2007). Petrogenesis of ultramafic and mafic xenoliths from Mesozoic basanites in southern Sweden: Constraints from mineral chemistry. International Journal of Earth Sciences, 96(3), 433–450. https://doi.org/10.1007/ s00531-006-0116-4
- Shaw, C. S. J. (2009). Textural development of amphibole during breakdown reactions in a synthetic peridotite. Lithos, 110(1), 215–228. https://doi.org/10.1016/j. lithos.2009.01.002
- Shaw, C. S. J., & Dingwell, D. B. (2008). Experimental peridotite–melt reaction at one atmosphere: a textural and chemical study. Contributions to Mineralogy and Petrology, 155(2), 199–214. https://doi.org/10.1007/ s00410-007-0237-1
- Shaw, C. S. J., Heidelbach, F., & Dingwell, D. B. (2006). The origin of reaction textures in mantle peridotite xenoliths from Sal Island, Cape Verde: the case for “metasomatism” by the host lava. Contributions to Mineralogy and Petrology, 151(6), 681–697. https:// doi.org/10.1007/s00410-006-0087-2
- Shaw, C. S. J., & Klügel, A. (2002). The pressure and temperature conditions and timing of glass formation in mantlederived xenoliths from Baarley, West Eifel, Germany: the case for amphibole breakdown, lava infiltration and mineral – melt reaction. Mineralogy and Petrology, 74(2), 163–187. https://doi.org/10.1007/ s007100200003
- Su, B. X., Zhang, H. F., Sakyi, P. A., Yang, Y. H., Ying, J. F., Tang, Y. J., Qin, K. Z., Xiao, Y., Zhao, X. M., Mao, Q., & Ma, Y. G. (2011). The origin of spongy texture in minerals of mantle xenoliths from the Western Qinling, central China. Contributions to Mineralogy and Petrology, 161(3), 465–482. https://doi.org/10.1007/s00410- 010-0543-x
- Tappe, S. (2004). Mesozoic mafic alkaline magmatism of southern Scandinavia. Contributions to Mineralogy and Petrology, 148(3), 312–334. https://doi.org/10.1007/ s00410-004-0606-y
- Tappe, S., Smart, K. A., Stracke, A., Romer, R. L., Prelević, D., & van den Bogaard, P. (2016). Melt evolution beneath a rifted craton edge: 40Ar/39Ar geochronology and Sr–Nd–Hf–Pb isotope systematics of primitive alkaline basalts and lamprophyres from the SW Baltic Shield. Geochimica et Cosmochimica Acta, 173, 1–36. https:// doi.org/10.1016/j.gca.2015.10.006
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23f3cdff-3d1f-47e0-8582-bf4a17d3a3da
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.