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1. Introduction 

The stochastic systems and their subsystems consist of 

some particular members representing the only 

possible failure mode. To particular members belong 

cross and oblique sections of tension, compression, 

flexural and torsional structures. The structural 

members (beams, slabs, columns, walls) of buildings 

consist of two or three design particular members and 

may be treated as auto systems representing 

multicriteria failure modes. An overloading of 

members during severe service and climate actions 

may provoke a failure of structures. Therefore, the 

requirements of design codes should be satisfied at all 

sections along structural members. 

Structural failures and collapses in buildings and 

construction works can be caused not only by 

irresponsibility and gross human errors of designers, 

builders or erectors but also by some conditionalities of 

recommendations and directions presented in design 

codes and standards. A possibility to ensure objectively 

the safety degree of structures subjected to extreme 

service loads, wind gust and snow pressures or wave 

surfs is hardly translated into reality using the traditional 

deterministic design methods of partial safety factors in 

Europe or load and resistance factors in the USA. 

It is understandable that probabilistic design 

approaches are inevitable for the calibration of partial 

factors. However, it should be more expedient to 

analyse the structural safety of particular members and 

their systems by probability-based methods. 

Regardless of efforts to improve and modify 

deterministic design approaches, it is inconceivable to 

fix a real reliability index of structures a failure domain 

of which changes with time. The time-dependent safety 

assessment and prediction of deteriorating members 

and systems using unsophisticated methods is a 

significant concern of researchers.  

Despite of fairly developed up-to-date concepts of 

reliability, hazard and risk theories, including the 

general principles on reliability for structures [6], [7], 

[15], it is difficult to apply probability-based 

approaches in structural safety analysis. These 

approaches may be acceptable to designers and 

building engineers only under the indispensable 

condition that the safety performance of members and 

their systems may be considered in a simple and easy 

perceptible manner. In other words, probabilistic 

methods may be implanted into structural design 

practice only using unsophisticated mathematical 

models helping us to assess all uncertainties due to the 

features of resistances and action effects of structures. 

This paper deals with probability-based safety analysis 

of deteriorating and not deteriorating members and 

their systems under extreme gravity and lateral 

(horizontal) actions using unsophisticated but fairly 

exact design models.  
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Abstract 

The need to use unsophisticated probability-based approaches and models in the structural safety analysis of the 

structures subjected to annual extreme service, snow and wind actions is discussed. Statistical parameters of single 

and coincident two extreme variable actions and their effects are analysed. Monotone and decreasing random 

sequences of safety margins of not deteriorating and deteriorating members are treated, respectively, as ordinary 

and generalized geometric distributions representing highly-correlated series systems. An analytical analysis of the 

failure or survival probabilities of members and their systems is based on the concepts of transformed conditional 

probabilities of safety margin sequences whose statistically dependent cuts coincide with extreme loading 

situations of structures. The probability-based design of members exposed to coincident extreme actions is 

illustrated by a numerical example. 
 

 



Kudzys Antanas 

Transformed conditional probabilities in the analysis of stochastic sequences 

 

 244 

2. Time dependent safety margin 

According to probability-based approaches (design 

level III), the time-dependent safety margin as the 

performance of deteriorating particular members may 

be presented as follows:  

 

      )()()(,)(
11

tSStRtgtZ qqggRXθ  

 

           )()(
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tStS wwqq   ,                                  (1) 

    

where θ  is the vector of additional variables 

characterizing uncertainties of models which give the 

values of resistance R , permanent gS , sustained 
1qS  

and extraordinary 
2qS  service and extreme wind wS  

action effects of members (Figure 1, a). This vector 

may represent also the uncertainties of probability 

distributions of basic variables. 

According to Rosowsky and Ellingwood [11], the 

annual extreme sum of sustained and extraordinary 

occupancy live action effects )()()(
21

tStStS qqq   

can be modelled as an intermittent process and 

described by a Type 1 (Gumbel) distribution with the 

coefficient of variation 58.0qSδ , characteristic qkS  

and mean qkqm SS 47.0  values. Latter on Ellingwood 

and Tekie [4] recommended modelling extreme values 

of this sum during a 50 years period by a Type 1 

distribution with the coefficient of variation 

25.0qSδ  and mean value qkqm SS  .  

It is proposed to model the annual extreme climate 

(wind and snow) action effects by Gumbel distribution 

law with the mean values equal to 

 wwkwm SkSS δ98.01  and  ssksm SkSS δ98.01  

[3, 6, 7, 13, 15]. According to meteorological data, the 

strong wind conditions are characterized by a small 

wind extreme velocity variation, i.e. 1.0vδ . On the 

contrary, a large variation is characteristic of strong 

snow loading. Therefore, the coefficients of variation 

of wind and snow loads depending on the feature of a 

geographical area are equal to 4.02.0 wδ  and 

7.03.0 sδ . 

Probability distributions of material properties are 

close to a Gaussian distribution [3], [6], [9], [12]. 

Therefore, a normal distribution or a log-normal 

distribution may be convenient in resistance analysis 

models [5], [6], [7]. The permanent action effect gS  

can be described by a normal distribution law [4], [5], 

[6], [10], [12]. Thus, for the sake of design 

simplifications, it is expedient to present the expression 

(1) in the form:    

 

   )()()( tStRtZ c  ,                                                 (2) 

 

where the component process 

 

   ggRc StRtR  )()( ,                                         (3) 

 

may be considered as the conventional resistance of 

members which may be modelled by a normal 

distribution;     
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Figure 1. Real (a) and conventional (b) models for safety analysis of particular members (sections) of 

deteriorating structures 
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    )()()( tStStS wwqq  ,                                   (4) 

 

    )()()( tStStS wwss  ,                                    (5) 

 

are the joint processes of two annual extreme action effects 

when floor and roof structures, respectively, are under 

consideration. The components in square brackets belonging 

to the wind action effect are used in design analysis of wind-

resistant members and systems. The action effect )(tSs  in 

Equation (5) is caused by extreme snow loads.    

 

3. Safety margin sequences with independent cuts   

The data presented in Section 2 allow us to model 

extreme service and climate action effects as 

intermittent rectangular pulse renewal processes. These 

time-variant intermittent action effects belong to 

persistent design situations in spite of the short period 

of extreme events being much shorter than the design 

working life of structures. When variable action effects 

may be treated as rectangular pulse processes, the 

time-dependent safety margin (2) may be expressed as 

the finite rank random sequence and written as: 

 

   kckk SRZ  , nnk ,1...,,3,2,1  .            (6) 

 

There  

 

   ggkRck SRR  ,                                             (7) 

 

   wkwqkqk SSS   or wkwsksk SSS  ,     (8) 

 

are the components of this non-stationary sequence; 

ntn   is the number of sequence cuts as critical 

events (situations) during design working life nt  of 

members (Figure 1, b), where  t1  is a mean 

renewal rate of these events per unit time when their 

return period is t . 

Usually the components ckR  and kS  are stochastically 

independent. The instantaneous survival probability of 

a member at k-th extreme situation (assuming that it 

was safe at the situations 1, 2, …, 1k ) is:  

 

     dxxFxfSR
kSckRkcksk )()(

0




PP ,              (9)  

 

where )(xf
ckR  and )(xF

kS  are the density and 

distribution functions of a conventional resistance ckR  

by (7) and an extreme action effect kS  by (8). In this 

case, the instantaneous failure probability of members 

may be presented as: 

    





1

1

1
k

i

siskfk PPP .                                          (10) 

 

Thus, the random sequence of safety margins may be 

treated as a geometric distribution with ranked 

instantaneous survival probabilities of members 

fnnffkff PPPPP  1,21 ......  calculated by 

Equation (10). 
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Figure 2. The scheme of series systems 

 

Failure probabilities of structures should always be 

defined for some reference period nt  or as a number of 

extreme events n  during this period. The scheme of 

series systems representing the safety margin 

sequences is given in Figure 2. When the cuts of rank 

random sequences are statistically independent, the 

cumulative distribution function and similarly a failure 

probability of members during their service life  nt,0  

with n  extreme situations may be presented as 

follows:   
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When the resistance )(tR  is a time-invariant function 

and treated as a stationary process, the instantaneous 

survival probability skP  by (9) is characterized by the 

same value for all cuts of the monotone sequence. In 

this case, Equation (11) becomes a cumulative 

distribution function of an ordinary geometric 

distribution as follows: 

 

       n
fkNf nNnF PPP  11)( .    (12) 

 

The failure probability of members may be 

approximated by Equations (11) and (12) only for 

situations in which a variance of the action effect S2
σ  

is much larger than the value cR2
σ  for their 

conventional resistance by (7).   
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4. Safety margin sequences with dependent cuts  

In design practice, only recurrent extreme action 

effects caused by extraordinary service and climate 

loads may be treated as stochastically independent 

variables. Usually, random sequence cuts of the safety 

margin (6) are dependent. The value of a coefficient of 

autocorrelation kl  of sequence cuts depends on 

uncertainties of material properties and dimensions of 

members. This coefficient may be defined as: 

 

        lklklkkl ZZZZCovZZ σσ  ,, ,    (13) 

 

where  lk ZZCov ,  and lk ZZ σσ ,  are an 

autocovariance and standard deviations of the random 

safety margins kZ  and lZ . 

The finite random sequence of member safety margins 

may be treated as a series stochastic system. The 

survival probability of highly correlated series systems 

consisting of two dependent elements can be expressed 

as follows: 
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where  1298.015.4 a  is the bond index of 

survival probabilities of second-order series systems. 

The data calculated by (14) and computed by the 

complex numerical integration method presented by 

Ahammed and Melchers [1] are very close. Thus, a 

conditional probability  00 12  ZZP  may be 

transformed to a probability 
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Therefore, Equation (14) may be presented in the form: 
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For not deteriorating structures, a member resistance is 

a time-invariant fixed random function the numerical 

values of which are random only at the beginning of a 

process. Therefore, the coefficient of correlation (13) 

of monotone sequence cuts may be expressed as: 

 

    ckkl RS 2211 σσ .                              (16) 

 

When the monotone rank sequence of safety margins 

consists of n  dependent elements, a failure probability 

of members is: 
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When a ratio of variances 122 ck RS σσ , the 

coefficient 0a
kl  and the failure probability (17) 

becomes   n
fkf PP  11  as it is expressed by 

Equation (12). 

A long-term survival probability of not deteriorating 

members is: 
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The decreasing rank sequence of safety margins of 

deteriorating members may be treated as a generalized 

geometric distribution. Similar to Equation (17), the 

failure probability of these members as series systems 

may be calculated by the formula: 
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where the transformed rank coefficient of correlation is 

 

      1... 122,1,1...   kkkkkkkk   (20) 

 

The long-term survival probability of deteriorating 

members fs PP 1 , where the probability fP  is 

given in (19). 

The presented method of transformed conditional 

probabilities may also be successfully used in the 

reliability analysis of random systems consisting of 

individual components and characterizing different 

failure modes of structures. In this case, it is expedient 
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to base the structural safety analysis of systems on the 

ranked survival probabilities of their members as: 

snnsskss PPPPP  1,21 ......  (Figure 2). A 

rank correlation matrix of systems is constructed 

taking into account this analysis rule. 

 

4. The system of safety margin sequences   

Due to the complexity of mathematical models, it is 

rather difficult to assess and predict a failure probability 

of structures subjected to two and more coincident 

recurrent and different by nature extraordinary actions. 

The methods based on the Markov-chain model and 

Turkstra’s rule [14] may be quite unacceptable in a 

probabilistic analysis of not only deteriorating but also 

not deteriorating members and their systems. The 

Markov-chain model may be quite inaccurate for 

reliability analysis of members exposed to multiple 

combination of action-effect processes [12]. The 

Turkstra’s rule may be assumed only in the case when the 

principal extreme load is strongly dominant [10]. 

Failure probabilities of members may be computed by 

modified numerical integration methods. It is suggested 

to use the theoretical expression of the cumulative 

distribution function of the maximum intensity of two 

load processes [10], the load overlap method [12] and the 

improved upper bounding techniques [13]. It leads to 

sufficiently accurate values but it is hard to realize these 

recommendations in engineering practice. 

The need to simplify a reliability analysis of 

deteriorating structures is especially urgent. In any 

analysis case, it must be taken into account that a 

member failure caused by two statistically independent 

extreme action effects may occur not only in the case of 

their coincidence but also when the value of one out of 

two effects is extreme. Therefore, three finite random 

sequences of safety margins should be considered: 

 

   kckk SRM 11  , 1...,,2,1 nk  ,                 (21) 

 

   kckk SRM 22  , 2...,,2,1 nk  ,                 (22) 

 

   kckk SRM 33  , 3...,,2,1 nk  .                 (23) 

 

There kkk SSS 213   is the joint action effect, the 

recurrence number of which during the period of time 

 nt,0  may be calculated by the equation: 

 

     21213  ddtn n ,                              (24) 

 

where 1d , 2d  and 1 , 2 are durations and renewal 

rates of extreme actions [8]. 

Mostly, the duration qd  of annual extreme gravity 

service loads is from 1 to 3 days. The durations of annual 

extreme snow and wind loads, respectively, are: sd 14-

28 days and wd 8-12 hours. The renewal rates of these 

actions are:  wsq 1/year. Therefore, for 50 

years reference period, the recurrence numbers of 

extreme actions are: qwn 0.2-0.5 and swn 2-4.  

When probability distributions of random variables X  

and Y  obey a Gumbel distribution law, the bivariate 

density function of the random variable YXZ   

may be presented in the form: 

 

    XXyzfzf mxz σ45.0,)( 




 

 

               dyYYyf my σ45.0,  ,                 (25) 

 

where mX , mY  and Xσ , Yσ  are means and standard 

deviations of these variables. 

Taking into account that YXZ 222
σσσ   is the 

variance of bivariate probability distribution, the joint 

density function may be expressed as: 

 

    zZZ azfzf ,)(  ,   (26) 

 

       2/12245.019.0 YXYXYXa mmz σσσσ  . 
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Figure 3. Bivariate density functions calculated by 

Equations (25) – 1 and (26) – 2: the coefficients of 

correlation  YX δδ 0.10 (a) and 0.224 (b) 

 

The probability density curves of joint extreme 

variable YXZ   are given in Figure 3. It is not 

difficult to ascertain that the difference between the 

values computed by Equations (25) and (26) is fairly 

small. Besides, the upper tails of both density curves 

coincides. Therefore, in design practice it is expedient 

to use the conventional bivariate distribution function 

of two independent extreme action effects with the 
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mean mkmkmk SSS ,2,1,3   and the variance 

kkk SSS 2
2

1
2

3
2

σσσ  . 

 

6. Numerical example   

The knee-joints of not deteriorating concrete frames of 

reliability class RC2 are under exposure of shear forces 

during 50 years period (Figure 4). The shear resistance 

of knee-joints is expressed as: cbhfR 068.0 . The 

characteristic, design and mean values of the concrete 

compressive strength and shear resistance of knee-

joints are:  

 

   ckf 30 MPa, cdf 20 MPa, cmf 38 MPa;  

 

   kR 306 kN, dR 204 kN, mR 387.6 kN.  

 

The variance of shear resistance of knee-joints is:  

 

     4.24616.387128.0
22 Rσ  (kN)

2
. 

 

1 - 1

V V Vg s w

1

b = 0.3 m
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Figure 4. The knee-joint of concrete frames 

 

The characteristic and design values of shear forces 

caused by permanent, snow and wind loads are:  

 

   gkV 77.72 kN,  

 

    wksk VV 38.86 kN;  

 

   92.10435.172.77 gdV  kN,  

 

   sdV 38.86 × 1.5 = 58.29 kN,  

 

    5.17.086.38wdV 40.8 kN.  

 

Thus, the joint design shear force  

 

    wdsdgdd VVVV 204 kN dR .  

 

Therefore, according to deterministic calculation data, 

the frame knee-joints are reliable. 

The coefficients of variation, means and variances of 

these extreme shear forces are:  

 

   gVδ 0.1,  

 

    gkgm VV 77.72 kN,  

 

   gV2
σ 60.4 (kN)

2
; 

 

    sVδ 0.6,  

 

      ssksm VkVV δ98.01 15.21 kN,  

 

   sV2
σ 83.25 (kN)

2
;  

 

   wVδ 0.3,  

 

     wwkwm VkVV δ98.01 21.86 kN;  

 

   wV2
σ 43.0 (kN)

2
. 

 

The parameters of additional variables are: 

 

   Rm 1.0,  

 

   Rδ 0.1;  

 

   Vm 1.0,  

 

    sg δδ  wδ 0.1,  

 

   swδ 0.15.  

 

Thus, the variances of revised shear forces are:  

 

    ggV2
σ 120.8 (kN)

2
,  

 

      ssV
2

σ 85.56 (kN)
2
,  

 

     wwV2
σ 47.8 (kN)

2
,  

 

     swswV2
σ 157.17 (kN)

2
. 

 

The parameters of conventional shear resistance (3) 

are:  

 

   cmR 387.6 – 77.72 =309.9 kN,  
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   cR2
σ 1.0 × 2461.4 + 387.6

2 
× 0.01  

 

             + 120.8 = 4084.6 (kN)
2
. 

 

According to (16), the coefficients of autocorrelation 

of the safety margins wcw VRZ  , scs VRZ   and 

wscsw VVRZ   of considered knee-joints are:  

 

    klw, 0.9884,  

 

    kls, 0.9795,  

 

    klsw, 0.9629.  

 

The recurrence number of joint action effect 

ws VV  calculated by Equation (24) is:  

 

   3n 50 [21/365 + 12/(24 × 3.65)] 1 × 1 = 2.945.  

 

According to (9), the instantaneous survival 

probabilities of members are:  

 

   wsk ,P 0.99999617,  

 

   ssk ,P 0.99999728,  

 

   swsk ,P 0.9999837.  

 

Therefore, according to (18), the partial long-term 

survival probabilities of analysed knee-joints are:  

 

   swP 0.9999717,  

 

   ssP 0.9999710,  

 

   sws,P 0.9999747.  

 

According to (13), the coefficients of cross-correlation 

of safety margins are:  

 

   sw 0.9839,  

 

    sww, 0.9871,  

 

    sws, 0.9914. 

 

 From Equation (19), the total survival probability of 

knee-joints is:  

 

   P = 0.9999747 × 0.9999717 × 0.9999710  

      × 















 1

9999717.0

1
98767.01 84.11   

 

     × 















 1

9999747.0

1
9871.01 73.11  = 0.9999635.  

 

It corresponds to the reliability index 

)8.3(97.3 min   [5]. 

Despite high-correlated cuts of the safety margin 

sequences wZ , sZ  and swZ  of knee-joints, 

considerable differences among their instantaneous and 

long-term survival probabilities are corroborated. 

The reliability verification of knee-joints of concrete 

frames by the deterministic partial factor method and 

probability-based approaches practically gave the same 

results. 

 

7. Conclusion 

When the system may be subjected to annual extreme 

service and climate actions, it is expedient to express 

its member performance processes by finite random 

sequences of safety margins, the dependent cuts of 

which coincide with the extreme loading situations of 

structures. Therefore, the generalized geometric 

distribution as the decreasing stochastic sequence may 

be successfully used in failure or survival probability 

analysis of highly correlated series systems. It leads to 

considerable perfections of probability-based analysis 

of deteriorating structures subjected to recurrent single 

and coincident actions as intermittent rectangular pulse 

renewal processes. A Gumbel distribution law may be 

used not only for joint sustained and extraordinary 

variable service loads but also for the sum of annual 

extreme action effects. 

For the sake of simplifications of probabilistic time-

dependent safety analysis of members, it is 

recommended to use design models with their 

conventional resistances and correlated sequence cuts 

of safety margins representing a variety of load 

combinations. The presented unsophisticated 

probability-based approaches and models may 

stimulate engineers having minimum appropriate skills 

to use full probabilistic methods in their engineering 

practice more courageously and effectively. It should 

be one more remedy in the struggle against 

deterministic approaches in the structural design.  
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