PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical creep analysis of FGM rotating disc with GDQ method

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rotating discs are the vital part of many kinds of machineries. Usually, they are operating at relatively high angular velocity and temperature conditions. Accordingly, in practice, the creep analysis is an essential necessity in the study of rotating discs. In this paper, the time dependent creep analysis of a thin Functionally Graded Material (FGM) rotating disc investigated using the Generalized Differential Quadrature (GDQ) method. Creep is described with Sherby’s constitutive model. Secondary creep governing equations are derived and solved for a disc with two various boundary conditions and with linear distribution of SiC particles in pure Aluminum matrix. Since the creep rates are a function of stresses, time and temperature, there is not a closed form solution to these equations. Using a solution algorithm and the GDQ method, a solution procedure for these nonlinear equations is presented. Comparison of the results with other existing creep studies in literature reveals the robustness, precision and high efficiency beside rapid convergence of the present approach.
Słowa kluczowe
Rocznik
Strony
331--341
Opis fizyczny
Bibliogr. 21 poz., rys.
Twórcy
autor
  • Ferdowsi University of Mashhad, Faculty of Engineering, Mashhad, I.R. Iran
autor
  • Ferdowsi University of Mashhad, Faculty of Engineering, Mashhad, I.R. Iran
Bibliografia
  • 1. Arya V.K., Bhatnagar N.S., 1979, Creep analysis of rotating orthotropic discs, International Journal of Nuclear Engineering and Design, 55, 323-330
  • 2. Bayat M., Sleem M., Sahari B.B., Hamouda A.M.S., Mahdi E., 2008, Analysis of functionally graded rotating disks with variable thickness, Mechanics Research Communications, 35, 283-309
  • 3. Bellman R., Kashef B.G., Casti J., 1972, Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations, Journal of Computational Physics, 10, 40-52
  • 4. Bhatnagar N.S., Kulkarni P.S., Arya V.K., 1986, Steady state creep of orthotropic rotating discs of variable thickness, International Journal of Nuclear Engineering and Design, 91, 121-141
  • 5. Białkiewicz J., 1986, Dynamic creep rupture of a rotating disc of variable thickness, International Journal of Mechanical Science, 28, 671-681
  • 6. Ghorbani M.T., 2012, A semi-analytical solution for time-variant thermoelastic creep analysis of functionally graded rotating disks with variable thickness and properties, International Journal of Advanced Design and Manufacturing Technology, 5, 2, 41-50
  • 7. Gupta V.K., Singh S.B., Chandrawat H.N., Ray S., 2004, Steady state creep and material parameters in a rotating disc of Al-SiC composites, European Journal of Mechanics A Solids, 23, 335-344
  • 8. Gupta V.K., Singh S.B., Chandrawat H.N., Ray S., 2005, Modeling of creep behavior of a rotating disc in the presence of both composition and thermal gradients, Journal of Engineering Materials and Technology, 127, 97-105
  • 9. Hojjati M.H., Hassani A., 2008, Theoretical and numerical analysis of rotating discs of nonuniform thickness and density, International Journal of Pressure Vessels and Piping, 85, 10, 694-700
  • 10. Loghman A., Gorbanpour Arani A., Shajari A.R., Amir S., 2011, Time dependent thermoelastic creep analysis of rotating disk made of Al-SiC composite, Archive of Applied Mechanics, 81, 1853-1864
  • 11. Nieh T.G., 1984, Creep rupture of a silicon carbide reinforced aluminum composite, Metallurgical Transactions, 15A, 139-146
  • 12. Pandey A.B., Mishra R.S., Mahajan Y.R., 1992, Steady state creep behavior of silicon carbide particulate reinforced aluminum composites, Acta Metallurgica et Materialia, 40, 2045-2082
  • 13. Shu C., 1996, Free vibration analysis of composite laminated conical shells by generalized differential quadrature, Journal of Sound and Vibration, 194, 587-604
  • 14. Shu C., Chew Y.T., 1999, Application of multi-domain GDQ method to analysis of waveguides with rectangular boundaries, Progress in Electromagnetics Research, 21, 1-19
  • 15. Shu C., Chew Y.T., Richards B.E., 1995, Generalized differential integral quadrature and their application to solve boundary layer equations, International Journal of Numerical Methods in Fluids, 21, 723-733
  • 16. Shu C., Richards B.E., 1992, Application of generalized differential quadrature to solve twodimensional incompressible Navier-Stokes equations, International Journal of Numerical Methods in Fluids, 15, 791-798
  • 17. Singh S.B., Ray S., 2001, Steady state creep behavior in an isotropic functionally graded material rotating disc of Al-SiC composite, Metallurgical and Materials Transactions, 32A, 1679-1685
  • 18. Singh S.B., Ray S., 2002, Modeling the anisotropy and creep in orthotropic aluminum-silicon carbide composite rotating disc, Mechanics of Materials, 34, 363-372
  • 19. Tornabene F., Fantuzzi N., Bacciocchi M., 2016, The GDQ method for the free vibration analysis of arbitrarily shaped laminated composites shells using a NURBS-based isogeometric approach, Composite Structures, 153, 190-218
  • 20. Tornabene F., Liverani A., Caligiana G., 2012, Laminated composite rectangular and annular plates: A GDQ solution for static analysis with a posteriori shear and normal stress recovery, Composite: Part B, 43, 1847-1872
  • 21. Whal A.M., Sankey G.O., Manjoine M.J., Shoemaker E., 1954, Creep test of rotating discs at elevated temperature and comparisons with theory, Journal of Applied Mechanics, 21, 225-235
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23ef8f1e-cd75-4351-a758-1959a3b5a0ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.