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Abstract 

This article addresses the problem of fault detection in robot manipulator systems.  In the production field, 

online detection and prevention of unexpected robot stops avoids disruption to the entire manufacturing line. 

A number of researchers have proposed fault diagnosis architectures for electrical systems such as induction 

motor, DC motor, etc..., utilising the technique of discrete wavelet transform. The results obtained from the use 

of this technique in the field of diagnosis are very encouraging. Inspired by previous work, The objective of 

this paper is to present a methodology that enables accurate fault detection in the actuator of a two-degree of 

freedom robot arm to avoid system performance degradation. A partial reduction in joint torque constitutes 

the actuator fault, resulting in a deviation from the desired end-effector motion. The actuator fault detection is 

carried out by analysing the torques signals using the wavelet transform.  The stored energy at each level of the 

transform contains information which can be used as a fault indicator. A Matlab/Simulink simulation of the 

manipulator robot demonstrates the effectiveness of the proposed technique. 
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1. INTRODUCTION 

 

The use of robotic systems has the potential to 

improve our lives by increasing efficiency, reducing 

human error, and enabling us to explore and achieve 

things that would otherwise be impossible. For most 

of these uses indeed, any failure or malfunction of a 

robot can have catastrophic and costly 

consequences. The integration of fault diagnosis 

(FD) capabilities into robotic systems allows for 

early detection of the presence of a fault and 

localization of its source. 

Recently, several fault diagnosis and detection 

techniques have been proposed in the field of 

robotics, through the integration of qualitative and 

quantitative information models [1, 2]. Signal 

processing has a significant role in the construction 

of any condition monitoring system. To this end, 

several signal analysis techniques have been used for  
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fault detection [3, 4], such as fast Fourier transform 

(FFT), short-time Fourier transform (STFT), and 

discrete wavelet transform (DWT). Despite its 

common use in industry for fault diagnosis, fast 

Fourier transform (FFT) analysis remains unsuitable 

for signals of a transient nature and rapidly reveals 

its limitations [5, 6]. As a result, the discrete wavelet 

transform (DWT) of the torque signal has been 

suggested as an alternative to overcome the 

shortcomings of the FFT. The wavelet transform can 

provide information simultaneously in both the time 

and frequency domains of the signal under 

examination, while offering a time-frequency 

representation of the signal [5-7]. 

Under normal operating conditions, each joint in 

robotic systems moves at different angular velocities 

(and accelerations), requiring varying torques, thus 

resulting in discrete, short-term varying signals[8].   

On the other hand, signals from a faulty state also 

have non-stationary behaviour. If the Fourier 

transform is used to calculate the frequency 

component of nonstationary signals, the results will 

not provide information about the temporal location 

of the regime shift in the signal. In contrast, time-

frequency analysis provides information about the 

composition and frequency variation of the 

introduced signal at different times [9]. 
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The discrete wavelet transform (DWT) algorithm 

is well-established in various signal processing 

research areas because it provides a time-frequency 

representation for non-stationary time-varying 

signals[10]. The Discrete Wavelet Transform 

(DWT) was implemented to solve the resolution 

problem associated with the Short-Time Fourier 

Transform (STFT)'s fixed window size. Moreover, 

there are faults that are described as catastrophic. An 

example of such a fault is a seal failure [11]. Other 

examples of a catastrophic fault in an actuator is a 

short circuit, a voltage drop or power loss in an 

electric motor.  

In our work, we use a robot arm. In general 

robotic arms are widely used in manufacturing and 

industrial settings, where they can perform repetitive 

and precise tasks such as welding, painting, and 

assembly. They are also used in medical 

applications, such as surgery and rehabilitation, as 

well as in research and exploration, such as in space 

exploration or deep sea exploration. There are 

various types of robotic arms, including cartesian, 

cylindrical, polar, and articulated arms, each with 

different advantages and application domains. The 

choice of arm depends on the specific task and 

requirements of the application. Robotic arms are 

typically controlled by a computer system that sends 

commands to the arm's actuators that move the arm's 

joints to the desired position and orientation. The 

control system can be programmed to perform 

specific tasks, or can be operated in real-time using 

sensors such as cameras or force sensors. 

In this work, we have focused only on faults that 

are not severe and which can be  handled  using 

standard control methods. [12, 13]. To control our 

robot arm with two degrees of freedom (2 DoF),  we 

consider the use of the   proportional integral 

derivative (PID) controller. We study the detection 

of actuator faults in robot manipulators, particularly 

faults that affect the joint drive systems. For accurate 

fault diagnosis, we adopted a discrete wavelet 

transform (DWT)-based time-frequency signal 

analysis to extract the most salient fault-related 

features. We applied the fault detection method to 

the motor torque signal.  

This paper is organised as follows: In Section 2, 

we discuss the problem of actuator fault diagnosis. 

Then, the PID controller for the robot arm is 

discussed in Section 3. Section 4, the discrete 

wavelet transform method is detailed. The 

simulation results obtained from the proposed 

control technique and diagnostic method are 

presented and discussed in Section 5. Finally, the 

conclusions and prospects for future work are 

presented in Section 6. 

 

 

 

2. PROBLEM FORMULATION AND 

MATHEMATICAL MODELLING 

 

2.1. The dynamic model 

Through the use of the Lagrange-Euler 

formalism, the dynamic model of a robot arm having 

n degrees of freedom (n_DOF) can be 

mathematically represented as [14]: 

 

𝜏 = 𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇) + 𝐺(𝜃) + 𝐹(𝜃̇) +

               𝜂(𝜃, 𝜃̇, 𝜏, 𝑡)                                               (1) 

Where: 

𝜃, 𝜃̇, 𝜃̈ ∈ 𝑅𝑛denote the vectors of joint positions, 

velocities, and accelerations, respectively; 𝜏 ∈ 𝑅𝑛is 

the vector of input torques, 𝑀(𝜃) ∈ 𝑅𝑛×𝑛 is the 

inertia matrix whose inverse exists, 𝐶(𝜃, 𝜃̇) ∈ 𝑅𝑛 is 

the vector representing Coriolis and centripetal 

forces, 𝐺(𝜃) ∈ 𝑅𝑛 is the vector of gravitational 

torque, 𝐹(𝜃̇) ∈ 𝑅𝑛is a vector containing the 

unknown static and dynamic friction terms, 

and 𝜇( 𝜃, 𝜃̇, 𝜏, 𝑡)    ∈ 𝑅𝑛encompasses all the terms 

that account for unmodeled dynamics and  external 

disturbances . 

 

2.2. Failures of the robotic arm 

In robotic systems, the occurrence and magnitude 

of faults are subject to time-dependent variations and 

are influenced by multiple parameters [12]. 

 

The fault dynamics can be generally represented as 

follows: 

𝐹(𝜃, 𝜃,̇ 𝜏, 𝑡) = 𝛽(𝑡 − 𝑇)𝑓𝑚(𝜃, 𝜃,̇ 𝜏)                   (2) 

 

𝛽(𝑡 − 𝑇) = {
0        𝑖𝑓  𝑡 < 𝑇
   1         𝑖𝑓  𝑡 ≥ 𝑇

                                (3) 

Where: 

𝑓𝑚(𝜃, 𝜃,̇ 𝜏)  ∈ 𝑅
𝑛is a vector that represents the fault 

in the robot manipulator,𝛽(𝑡 − 𝑇)represents the 

appearance or non-appearance of the fault and T is 

the time of occurrence of the fault. The fault fm is 

given by: 
 

 𝑓𝑚(𝜃, 𝜃,̇ 𝜏) = 𝑓𝑚𝜃(𝜃, 𝜃̇) + 𝑓𝑚𝜏(𝜏)                           (4) 

Where: 

𝑓𝑚𝜏(𝜏)and𝑓𝑚𝜃(𝜃, 𝜃̇) represent torque-dependent and 

state-dependent faults respectively. 

The dynamics of the manipulator with failure is 

defined by: 

𝜏⏟
𝐼𝑛𝑝𝑢𝑡 𝑇𝑜𝑟𝑞𝑢𝑒

    =

𝑀(𝜃)𝜃̈ + 𝐶(𝜃, 𝜃̇) + 𝐺(𝜃) + 𝐹(𝜃̇) + 𝜂(𝜃, 𝜃̇, 𝜏, 𝑡)⏟                              
𝑅𝑜𝑏𝑜𝑡𝑖𝑐 𝑆𝑦𝑠𝑡𝑒𝑚𝑠 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

+

𝛽(𝑡 − 𝑇)𝑓𝑚(𝜃, 𝜃,̇ 𝜏)⏟            
𝐹𝑎𝑢𝑙𝑡 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠

                                                     (5) 

Actuators in robot manipulators commonly 

consist of electric motors. Faults occurring in 

rotating electric motors can be categorised into three 
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types: electrical faults, rotational faults, and 

vibration faults.  

The mathematical model of the electric faults in 

motors is given by the following equation [15]: 

𝑓(𝜏) = 𝛼𝜏    − 1 < 𝛼 ≤ 𝐻 < ∞                       (6) 

Where H is the maximum value that the parameter 

α can take. 𝛼 ∈ ℝ 

 

2.3. The PID controller 

For the robotic system (1) the control objective is 

to follow a predetermined trajectory. The PID 

controller is the most efficient choice for robot 

control because it offers a combination of 

operational simplicity and ease of implementation. 

The robot's mechanism is modelled as a 

decoupled linear system, with each joint controlled 

by a PID type controller. The fault detection scheme 

developed in this paper is independent of the type of 

control applied to the robot system. 

Under faultless operating conditions, the formula 

used for finding the control signal τ is given as 

𝜏(𝑡) = 𝐾𝑃(𝜃𝑑 − 𝜃) + 𝐾𝐷(𝜃̇𝑑 − 𝜃̇) + 𝐾𝐼∫ (𝜃𝑑 − 𝜃)𝑑𝑡 (7)                                               

Where: 

𝜃𝑑  , 𝜃̇𝑑, 𝜃̈𝑑are the vectors of desired joint positions, 

velocities, and accelerations, respectively. 

e(t) = θd(𝑡) − θ(t) is the joint tracking error 

between the desired trajectory and the actual one.  

𝐾𝑃 , 𝐾𝐷 , 𝐾𝐼are  2× 2 constant, diagonal and positive 

matrices. 

Moreover, we have the following assumptions: 

Assumption 1: After a fault occurs, the states of the 

robotic system remain bounded; 

 i.e., 𝜃(𝑡), 𝜃̇(𝑡) ∈ 𝐿∞ 

Assumption 2: The vector field 𝜇(𝑡)representing the 

unknown additive disturbances and noise is both 

bounded and small, meaning that it remains within 

limited and negligible ranges, i.e., 
|𝜇𝑖(𝑡)| ≤ 𝜇𝑖̅(𝑡), ∀ 𝑡 ≥ 0, 𝑖 = 0, . . 𝑛 

Where  𝜇𝑖̅(𝑡) is a small value constant. 

 

2.4. Discrete wavelet transform 

The wavelet transform (DWT) is a mathematical 

tool employed for processing and analysis of signals. 

It is a way of representing a signal as a sum of 

wavelets, which are small waves that are scaled and 

translated in time. The DWT has the advantage of 

being able to capture both frequency and time-

domain information, which makes it useful in many 

different applications, such as image compression, 

audio processing, and data analysis. The DWT 

works by dividing a signal into smaller segments, or 

"sub-bands", at different scales or resolutions. Each 

sub-band contains information about a different 

range of frequencies, with the highest frequencies in 

the smallest sub-bands and the lowest frequencies in 

the largest sub-bands [3, 15]. 
The DWT can be used for a variety of 

applications, such as denoising, feature extraction, 

compression, and data analysis. One of the main 

benefits of the DWT is its capability to analyse 

signals that are non-stationary, which are signals that 

change over time or have varying frequency 

components. 

 Figure 1 presents a diagram that illustrates the 

DWT process of performing multilevel signal 

decomposition. After calculating the approximation 

and detail coefficients at various levels of 

decomposition, it is possible to reconstruct the 

approximation and detail signals at each level, 

facilitating the extraction of features. 

By employing the discrete wavelet transform, it 

is possible to conduct a multiresolution analysis of 

the torque signals in both healthy and faulty states. 

This analysis, described in [4], involves 

decomposing the analysed torque signal S into 

components at multiple levels. At the initial level, 

the signal is decomposed into an approximation 

component (𝑎1) and a detail component (𝑑1). 

Mathematically, these coefficients can be expressed 

as: 

{
𝑎1 = ∑ 𝐿(𝑘 − 2𝑛) ∗ 𝑆𝑖(𝑘)

𝑛
𝑘

𝑑1 = ∑ 𝐻(𝑘 − 2𝑛) ∗ 𝑆𝑖(𝑘)
𝑛
𝑘

                              (8) 

The subsequent decomposition level is built upon 

the coefficient (𝑎1). In this process, (𝑎1) is 

decomposed into another approximation component 
(𝑎2) and another detail component (𝑑2), and this 

iterative decomposition continues further as 

illustrated in Figure 1. The coefficients at level 2 can 

be mathematically represented as follows: 

{
𝑎2 = ∑ 𝐿(𝑘 − 2𝑛) ∗ 𝑎𝑖(𝑘)

𝑛
𝑘

𝑑2 = ∑ 𝐻(𝑘 − 2𝑛) ∗ 𝑎𝑖(𝑘)
𝑛
𝑘

                             (9) 

Following the decomposition process, the 

original signal S can be reconstructed in the 

following manner: 

𝑆(𝑡) = 𝑎1 + 𝑑1 = (𝑎2 + 𝑑2) + 𝑑1 

= (𝑎3 + 𝑑3) + 𝑑2 + 𝑑1                                     (10) 

or more generally,  
𝑆(𝑡) = 𝑎𝑛 + 𝑑𝑛 + 𝑑(𝑛−1) +⋯𝑑2 + 𝑑1         (11) 

There are many types of wavelets, such as Haar, 

Daubechies, Symlet, etc. Proper selection of the 

mother wavelet type and the number of 

decomposition levels is crucial prior to applying the 

DWT [16]. Haar wavelet has some important 

properties that make it useful in signal processing 

and image compression. In this work, The Haar 

wavelet is chosen as a mother wavelet for the 

discrete wavelet transform due to its excellent time 

localization properties and its straightforward 

hardware implementation. The important property of 

the Haar transform is that it preserves the energy of 

the signals. This means that the total energy of a 

signal remains unchanged after undergoing the Haar 

transform [17]. 
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The Haar wavelet is a mathematical function 

named after the Hungarian mathematician Alfréd 

Haar, who first introduced it in 1909. The Haar 

wavelet is a simple piecewise function that has a 

compact support, meaning that it is zero outside a 

finite interval. It consists of a square wave that starts 

at zero and ramps up to one, followed by a negative 

square wave that starts at one and ramps down to 

zero. In wavelet analysis, two main functions are 

utilized: the scaling function ∅, also known as the 

father wavelet,  and the wavelet 𝜓(𝑡) also referred to 

as the mother wavelet. The Haar mother wavelet 

function can be described as[18]: 

𝜓(𝑡) =

{
 
 

 
 1          0 ≤ 𝑡 <

1

2
 ,

−1          
1

2
≤ 𝑡 < 1 ,

0          𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

                              (12) 

 
Whose graph is shown in Figure 2. 

 

Fig. 2. The Haar wavelet 𝜓(𝑡) 

The Haar wavelet's lack of continuity and 

differentiability can be advantageous for analyzing 

signals with abrupt transitions. This is because the 

Haar wavelet can effectively capture and represent 

sharp changes in signals, making it suitable for 

detecting faults or abrupt changes in machine 

systems.[19]. 

The wavelet can detect the presence of a fault 

when a torque fault occurs. Diagnosis is performed 

by observing and comparing the decomposition 

levels that provide information about the fault. By 

assessing the associated eigenvalue for each level, it 

is possible to construct a highly efficient diagnostic 

tool capable of quantifying the severity of faults. 

The energy eigenvalue E corresponding to each 

frequency band is expressed as follows [4]: 

𝐸𝑗 = ∑ |𝐻𝑗,𝑘(𝑛)|
2𝑘=𝑛

𝑘=1                                        (13) 

The eigenvalue E is calculated based on the 

DWT decomposition level (j), DWT decomposition 

time (n), and the magnitude of the wavelet 

coefficient (H) of the signal at each discrete point in 

the corresponding frequency band. 

The energy values at different signal 

decomposition levels contain valuable information 

that can be utilized for diagnosing and quantifying 

the degree of torque faults. 

 

3. SIMULATION RESULTS 

 

The simulation model is a two-link planar 

manipulator as depicted in Figure 3 [20].  

The variables 𝜃1, 𝐿1, 𝑀1 represent the joint angle, 

length, and mass of the first link (𝑖 = 1), 
respectively. Similarly, 𝜃2, 𝐿2, 𝑀2 represent the joint 

angle, length, and mass of the second link (𝑖 = 2), 
respectively. g represents the gravitational 

acceleration. The robot links are assumed to be 

uniform rods of length 1 m and masses 3 kg and 2 

kg, respectively. The simulation is implemented in  

Simulink/Matlab. 

Fig. 3. Two-link robot arm 

 

Where 𝜃, 𝜃̇, 𝜃̈ 𝑎𝑛𝑑 𝜏 represent position, velocity, 

acceleration and control torque. 

𝑀(𝜃) = [
𝑀11 𝑀21
𝑀21 𝑀22

] is the inertia matrix with the  

following elements: 

𝑀11 = (𝑀1 +𝑀2)𝐿1
2 +𝑀2𝐿2

2 + 2𝑀2𝐿1𝐿2cos𝜃2 , 

𝑀12 = 𝑀21 = 𝑀2𝐿2
2 +𝑀2𝐿1𝐿2cos𝜃2, 

𝑀22 = 𝑀2𝐿2
2, 

 

Fig. 1. Multi-level (n) signal decomposition using DWT 
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𝐶(𝜃, 𝜃̇) = [
𝐶11
𝐶21
] 

Represents the vector of Coriolis and centrifugal forces, 

where: 

𝐶11 = −𝑀2𝐿1𝐿2 (2𝜃̇1𝜃̇2 + 𝜃̇2
2
) 𝑠𝑖𝑛𝜃2, 

𝐶21 = 𝑀2𝐿1𝐿2𝜃̇2
2
𝑠𝑖𝑛𝜃2, 

 

𝐺(𝜃) = [
𝐺11
𝐺21
] =

[
−(𝑀1 +𝑀2)𝑔𝐿1𝑠𝑖𝑛𝜃1 −𝑀2𝑔𝐿2sin (𝜃1 + 𝜃2)

−𝑀2𝑔𝐿2 sin(𝜃1 + 𝜃2)
] ∶  

is a vector of gravity torques. 

In the field of control system design, selecting 

appropriate numerical values for controller gains, 

such as 𝐾𝑃 , 𝐾𝐷 , 𝑎𝑛𝑑 𝐾𝐼 is a critical step in creating an 

effective control system. These gains dictate the 

controller's response to system errors and have a 

profound impact on achieving the desired 

performance and stability of the system. There are 

several conventional methods for tuning PID 

controllers, each with its unique advantages and 

applicability. These methods encompass the 

Ziegler–Nichols (ZN) method [21], the Cohen–Coon 

Technique [22], manual tuning [23], optimization 

techniques [24], and the utilization of PID tuning  

software [25], among others [26]. Additionally, PID 

controllers can be tuned using various intelligent 

methods such as fuzzy logic, artificial neural 

networks (ANN), adaptive neuro-fuzzy inference 

systems (ANFIS), genetic algorithms (GA), and 

more [27, 28]. The choice of tuning method depends 

on the specific system under study, and the control 

objectives. 

In our work, the selection of numerical values for 

the PID gains (𝐾𝑃 , 𝐾𝐷 , 𝑎𝑛𝑑 𝐾𝐼) is a critical step in 

achieving the desired control system performance. 

To determine these values, we have chosen manual 

tuning using simulation tools, namely 

MATLAB/SIMULINK. This approach enables us to 

fine-tune the PID controller parameters based on the 

system's response to ensure optimal control system 

performance. This decision is motivated by the 

advantages of simulation, which allow us to explore 

and test a wide range of PID parameter combinations 

in a controlled and risk-free virtual environment. By 

conducting simulations, we can observe how 

different PID gain values impact the system's 

response, thus facilitating the fine-tuning process. 

This approach ensures that our chosen PID values 

align precisely with our project's control objectives 

and result in optimal system performance. 

The controller gains in the control law (7) has been 

chosen as follows: 

𝐾𝑃 = 500𝐼2×2, 𝐾𝐼 = 500 𝐼2×2 𝑎𝑛𝑑 𝐾𝐷 = 500𝐼2×2, 

where 𝐼2×2represents a 2 × 2 identity matrix . 

The desired joint trajectories to be tracked have been 

selected as follows:  

𝜃𝑑1(𝑡) = 2 ∗ sin (0.3𝜋𝑡) 
𝜃𝑑2(𝑡) = (−2.6) ∗ sin (0.3𝜋𝑡) 
 

3.1. First simulation: absence of faults for the 

first and the second motors 

In this simulation, the first and second motors 

have been selected free of faults. This healthy state 

is illustrated in Figure 4 and Figure 5. 

 

Fig. 4. Joint positions without fault 

 

 

Fig.5. Joint position error 

It is seen from the figures that the actual trajectory of 

the position perfectly follows the desired trajectory, 

The PID control objective is therefore achieved.  

 

3.2. Second simulation: actuator faults 

In this second simulation we have considered two 

types of faults, which are: 

• Bias fault on 𝜏1 (first joint) for 𝑡∈ [3 ÷ 3.5] sec  

• Partial fault on second joint for 𝑡∈ [3.4 ÷ 4.6] 

sec 

In this simulation, a failure modelled by equation 

(6), which is a reduction in motor torque, occurs on 

the first motor (1) at t=3sec. Similarly, a partial fault 

on the second motor occurs at time t=3.4sec, which 

results in the deviation of the actual position 

trajectory (faulty state) from the desired trajectory 

(healthy state) starting from this time onwards, as 

illustrated in Figures 6 and 7. After the occurrence of 

a fault, it becomes clear that the local PID control 

law at joints 1 and 2 loses its ability to maintain the 

joint position on its desired trajectory. Fig. 8 presents 

a comparison between the command torque (blue 

line) and the actual torque (red line). 

 

Fig. 6. Joint positions with faults 
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Fig. 7. Joint position error 

 
Fig. 8. Control vs. actual torques 

 

The DWT is then used in order to extract the 

main components of a fault (Torque signal in faulty 

state). Figures 9 and 10 show the obtained results 

after conducting the DWT (The sub-signals from the 

DWT analysis) on the motor torque signals   in 

healthy and faulty states of the robot. There are 5 

sub-figures, the remaining sub-figures illustrate the 

generated sub-signals that represent the detail 

coefficients (d6, d5, and d7) as well as the 

approximation coefficient (a7). Each sub-signal 

corresponds to a distinct frequency band. In this 

manner, the healthy torque signals and the faulty 

torque signals are decomposed into seven levels. For 

each level of decomposition, the detail component 

corresponds to a high-frequency range, while the 

approximation component encompasses the low 

frequencies. 

Figures 9.a and 10.a represent the DWT analysis 

of the motor in a healthy state, showing the signal 

characteristics under normal operating conditions. In 

contrast, Figures 9.b and 10.b present the DWT 

analysis of faulty signals, which exhibit distinct 

features such as discontinuity in value and sudden 

frequency changes. These characteristics suggest the 

presence of abnormalities or faults in the motor 

system. The observation reveals that the faults start 

to become apparent at level 5, as previous levels 

typically lack the capability to detect these 

occurrences. This highlights the significance of 

higher decomposition levels in effectively 

identifying and capturing the fault-related 

information. 

Comparison between the results of the DWT 

analysis of healthy and faulty states indicates that 

when the fault level increases, the amplitude 

coefficients 𝑎7, 𝑑7 , 𝑑6and 𝑑 5 also increase. The 

same results are obtained regarding the oscillations.  

This simulation demonstrates how wavelet 

analysis can effectively detect the precise moment 

when a signal undergoes a change, as well as the 

nature of that change, whether it is a sudden 

disruption in the signal, an abrupt shift in 

oscillations, or a significant variation in amplitude. 

Such information enables us to assess the operational 

status of the robot. 

 

 

Fig.9. First joint 

 

Fig. 10. Second joint  

The torque energy can be calculated for each 

frequency band using Equation (12). Tables 1 

through 4, give the energy values at various 

decomposition levels in the simulation of the first 

and the second joints. Furthermore, It is important to 

note that the Haar transform guarantees the 

conservation of signal energies. 
 

Table 1. Nomenclature of Frequency Band Numbers and Energy Distribution Across Various Scales. 

Control torque of the first joint: No faults detected 

Scale Range of Frequencies (Hz) Frequency band number Energy (Joules) 

d1 1250–2500 b1 0.0620 

d2 625–1250 b2 0.0615 

d3 312.5–625 b3 0.0290 

d4 156.25–312.5 b4 0.0243 

d5 78.125 –156.25 b5 0.0288 

d6 39.0625 – 78.125 b6 0.0576 

d7 19.5312 – 39.0625 b7 0.4456 

a7 0 – 19.5312 b8 19.2174 

∑    19.9262 

Original signal   20.2986 
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The analysis of the calculated torques energies at 

each frequency band with fault and without fault,  

can be used for fault detection. This is because the 

energy of the torque may be amplified in certain 

frequency bands due to the generated damage. 

After the occurrence of a fault, the relative 

energy of the signal tends to increase in certain 

frequency bands, resulting in a significant disparity 

between the energy calculations before and after the 

fault. 

Therefore, changes in energy levels within 

specific frequency bands serve as indicators of the 

motor's condition, and the energy content in the 

decomposed frequency bands of the signal holds 

valuable information about the severity of damage. 

Simulation results depicted in Figures 11a and 

11b demonstrate the variation in stored energy  

 

 

 

across different levels of the torque signal, reflecting 

the healthy and faulty states of the robot. Notably, an 

upsurge in energy is observed in both the first and 

second joints, which can serve as an indicator of the 

fault. Despite the fault being characterized by a 

decrease in actuator torque, it is noteworthy that an 

increase in energy is generated, primarily attributed 

to the influence of the PID regulator. 

The PID regulator's response to the fault, by 

increasing the actuator command, helps maintain the 

desired performance of the system, albeit at the cost 

of consuming more energy. The increase in energy 

can be seen as a consequence of the PID regulator's 

effort to counteract the effect of the fault and 

maintain system stability. 

The comparison of the obtained results with other 

techniques from the literature (signal processing 

technique)[29], namely FFT (Fast Fourier 

Table 2. Nomenclature of Frequency Band Numbers and Energy Distribution Across Various Scales. 

Actual torque of the first joint: Occurrence of fault  

Scale Range of Frequencies (Hz) Frequency band number Energy (Joules) 

d1 1250–2500 b1 0.0582 

d2 625–1250 b2 0.0610 

d3 312.5–625 b3 0.0295 

d4 156.25–312.5 b4 0.0246 

d5 78.125 –156.25 b5 0.0427 

d6 39.0625 – 78.125 b6 0.0740 

d7 19.5312 – 39.0625 b7 0.5235 

a7 0 – 19.5312 b8 24.8464 

∑    25.6599 

Original signal   26.2470 

Table 3. Nomenclature of Frequency Band Numbers and Energy Distribution Across Various Scales. 

control torque of the second joint: No faults detected 
Scale Range of Frequencies (Hz) Frequency band number Energy (Joules) 

d1 1250–2500 b1 0.6492 

d2 625–1250 b2 0.6946 

d3 312.5–625 b3 0.2669 

d4 156.25–312.5 b4 0.1513 

d5 78.125 –156.25 b5 0.1023 

d6 39.0625 – 78.125 b6 0.1259 

d7 19.5312 – 39.0625 b7 0.2926 

a7 0 – 19.5312 b8 9.0698 

∑    11.3526 

Original signal   11.6735 

Table 4. Nomenclature of Frequency Band Numbers and Energy Distribution Across Various Scales. 

Actual torque of the second joint: Occurrence of fault 

Scale Range of Frequencies (Hz) Frequency band number Energy (Joules) 

d1 1250–2500 b1 0.6503 

d2 625–1250 b2 0.6748 

d3 312.5–625 b3 0.2625 

d4 156.25–312.5 b4 0.1822 

d5 78.125 –156.25 b5 0.1466 

d6 39.0625 – 78.125 b6 0.2000 

d7 19.5312 – 39.0625 b7 0.3910 

a7 0 – 19.5312 b8 11.5076 

∑    14.0150 

Original signal   14.5206 
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Transform) and STFT (Short-Time Fourier 

Transform), sheds light on the effectiveness of the 

chosen Discrete Wavelet Transform (DWT) 

approach for actuator fault detection in the 2 DOF 

robot arm context.  

The evaluation of the diagnostic techniques is 

based on an analysis of the advantages and 

disadvantages of the presented. 

As indicated in reference [29], it can be inferred 

that each diagnostic approach has the capacity to 

identify various forms of damage and faults during 

the robot's operation, contingent upon the objectives 

established.  

The FFT and STFT techniques are suitable for 

rapid and uncomplicated detection, particularly 

when applied to steady signals or signals that exhibit 

low levels of noise.  These techniques are 

characterized by their simplicity and do not 

necessitate supplementary sensors  and 

computational power [30],  they are, however,   less 

effective for transient signals  and are better suited 

for  stationary signals or those with minimal noise. 

Based on the results presented in this article and 

previous research [4, 31], it can be concluded that 

DWT (Discrete Wavelet Transform) is remarkable 

for its capability to provide a specialized time-

frequency representation tailored for non-stationary, 

time-varying signals. This characteristic makes 

DWT particularly suitable for analysing transient 

signals, enabling a thorough assessment of signal 

components across both temporal (time) and spectral 

(frequency) domains. Furthermore, the work 

presented in this paper introduces the idea of 

evaluating torque energy across different frequency 

ranges through DWT analysis, thus emphasizing that 

alterations in energy levels within these specific 

frequency ranges can act as indicators of the the 

motor's state. 

 

4. CONCLUSION AND FUTURE WORK 

 

In conclusion, the proposed method based on the 

Discrete Wavelet Transform for detecting torque-

related faults in the actuator of a 2 DOF robot arm is 

shown to be effective in detecting different types of 

faulty and normal operating conditions. The 

method's advantages in both the time and frequency 

domains make it an efficient and useful tool for 

actuator fault detection. 

As a potential improvement, the sub-signals 

obtained from the DWT analysis can be directly used 

as inputs to various classification schemes, such as 

the ANN classifier, for more accurate fault detection. 

Moreover, it would be worthwhile to explore the 

application of condition monitoring techniques using 

other types of signals, such as vibration, electrical, 

and sound signals, in order to enhance the overall 

effectiveness of robot condition monitoring. 

Adequate processing these signals is of utmost 

importance to extract the most relevant features 

associated with specific types of faults. These  

 

 

Fig. 11. Histograms of the torque energy at 

each frequency band (for various 

decomposition levels) 

 

extracted features can then be utilized to build a 

comprehensive database comprising the most 

common faults encountered in the system. Hence, it 

would be possible to design a state monitoring 

system for the robot that is capable of detecting 

various electrical and mechanical faults using the 

proposed method. This system would enable 

continuous monitoring of the robot's performance, 

hence offering real-time feedback to enhance its 

overall reliability and efficiency. 
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