PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of irradiating the beam dump with the main electron beam of the superconducting linear accelerator PolFEL

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The transport of both primary and secondary radiation in the beam dump was conducted using Monte Carlo analysis. The radiation leakage level through the shielding walls of the bunker of the superconducting, linear electron accelerator PolFEL during beam operation, as well as the radiation dose generated by radioactivity, and the activity level of the beam dump and soil after beam operation were examined. The analysis encompassed three main electron beams with energies of 72 MeV, 187 MeV, and 280 MeV, corresponding to the need to deposit in the beam dump 900.0 W, 935.1 W, and 1400.1 W of electron beam power, respectively. It was determined that 99.86%, 99.83%, and 99.81% of the primary electron beam power was deposited in the designed beam dump. It was determined that the radiation leakage level through the lateral walls of the bunker, outside which nonexposed workers may stay, should be <1.8·10-4 miSv/h, 0.008(5) miSv/h, and 0.10(2) miSv/h, respectively. It was calculated that the radiation dose rate generated by radioactivity allows staying on the shielding plates above the beam dump no earlier than about a day after the end of the 30 days exposure period of the beam dump. The maximum activity level for the soil activity level at the most exposed location should be <0.008 Bq, 3.37(15) Bq, and 29.8(9) Bq for indicated above electron beam energies, respectively.
Czasopismo
Rocznik
Strony
43--49
Opis fizyczny
Bibliogr. 15 poz., rys.
Twórcy
  • National Centre for Nuclear Research Andrzeja Sołtana St. 7, 05-400 Otwock-Świerk, Poland
Bibliografia
  • 1. Romaniuk, R. S. (2009). POLFEL – A free electron laser in Poland. Photonics Letters of Poland, 1(3), 103–105. DOI: 10.4302/plp.2009.3.01.
  • 2. Sekutowicz, J., Czuma, P., Krawczyk, P., Kurek, K., Lorkiewicz, J., Nietubyć, R., Poliński, J., Staszczak, M., Szamota-Leandersson, K., & Szewiński, J. (2019). Polish free electron laser: short technical description. Proceedings of SPIE, 11054, 1105405. DOI: 10.1117/12.2526756.
  • 3. Szamota-Leandersson, K., Nietubyć, R., Czuma, P., Krawczyk, P., Krzywiński, J., Sekutowicz, J., Staszczak, M., Szewiński, J., Bal, W., Poznański, J., Bartnik, A., Fiedorowicz, H., Janulewicz, K., & Pałka, N. (2019). PolFEL – New facility in Poland. In 39th Free-Electron Laser Conference, 26–30 August 2019 (pp. 746–748). Hamburg, Germany: JACoW Publishing. DOI: 10.18429/JACoW-FEL2019-THP081.
  • 4. Nietubyć, R., Banaszkiewicz, T., Bartnik, A., Chorowski, M., Czuma, P., Duda, P., Grabowski, W., Horodeński, A., Fiedorowicz, H., Felisiak, P., Fok, T., Janulewicz, K., Kopeć, J., Kowalski, G., Krawczyk, P., Krzywiński, J., Kwiatkowski, R., Lorkiewicz, J., Nowak, M., Michalski, G., Marendziak, A., Matusiak, M., Pałka, N., Panaś, R., Poliński, J., Romanowicz, P., Sekutowicz, J., Sosnowski, J., Staszczak, M., Szamota-Leandesson, K., Szewiński, J., Tazbir, J., Terka, M., Wawrzyniak, A., Wasilewski, A., Węgrzyński, Ł., Wiechecki, J., Wójtowicz, M., Zagrajek, P., & Ziemiański, D. (2021). Status of PolFEL Project. In 2021 International Conference on Radio Frequency Superconductivity (SRF 21), 28 June–2 July 2021, Tsukuba, Japan. https://indico.frib.msu.edu/event/38/attachments/158/1069/THPFAV003.pdf.
  • 5. Maslov, M., Schmitz, M., & Sychev, V. (2006). Layout considerations on the 25 GeV/300 kW beam dump of the XFEL Project. Hamburg: DESY. (TESLA-FEL 2006-05).
  • 6. Altarelli, M., Brinkmann, R., Chergui, M., Decking, W., Dobson, B., Düsterer, S., Grübel, G., Graeff, W., Graafsma, H., Hajdu, J., Marangos, J., Pflüger, J., Redlin, H., Riley, D., Robinson, I., Rossbach, J., Schwarz, A., Tiedtke, K., Tschentscher, T., Vartaniants, I., Wabnitz, H., Weise, H., Wichmann, R., Witte, K., Wolf, A., Wulff, M., & Yurkov, M. (2007). The European X-Ray Free-Electron Laser. Technical design report. Hamburg: DESY. (DESY 2006-097).
  • 7. Shi, T., Sun, D., Jovanovic, I., Kalinchenko, G., Krushelnick, K., Kuranz, C. C., Maksimchuk, A., Nees, J., Thomas, A. G. R., & Willingale, L. (2021). Optimization of the electron beam dump for a GeVclass laser electron accelerator. Appl. Radiat. Isot., 176, 109853. DOI: 10.1016/j.apradiso.2021.109853.
  • 8. Chatterjee, S., Banerjee, K., Pratap, Roy, Bandyopadhyay, T., Bhattacharya, C., & Bhattacharya, S. (2013). Monte Carlo calculations for beam dump shield design for K-130 cyclotron at VECC. Proceedings on the DAE Symp. Nucl. Phys., 58, 886. http://www.sympnp.org/proceedings/58/G21.pdf.
  • 9. Huang, L., Dejun, E., Tao, K., & Liu, C. (2024). Simulation study of coupled particle cascade and finite element analysis for beam dump of DALS. Radiation Detection Technology and Methods, 8(2), 1254–1263. DOI: 10.1007/s41605-023-00444-7.
  • 10. Böhlen, T. T., Cerutti, F., Chin, M. P. W., Fassò, A., Ferrari, A., Ortega, P. G., Mairani, A., Sala, P. R., Smirnov, G., & Vlachoudis, V. (2014). The FLUKA ode: Developments and challenges for high Energy and medical applications. Nucl. Data Sheets, 120, 211–214.
  • 11. Ferrari, A., Sala, P. R., Fassò, A., & Ranft, J. (2005). FLUKA: a multi-particle transport code. Geneva: CERN. (CERN-2005-10, INFN/TC_05/11, SLACR-773).
  • 12. Centrum Informatyczne Świerk. (n.d.). https://www.cis.gov.pl.
  • 13. Council of Ministers of the Republic of Poland. (2006). Regulation of the Council of Ministers of the Republic of Poland of July 12, 2006, Chapter 2, § 5. (In Polish).
  • 14. International Atomic Energy Agency. (2006). Radiation protection in the design of radiotherapy facilities. Vienna: IAEA. (Safety Reports Series n o. 47).
  • 15. International Atomic Energy Agency. (2018). Radiation protection and safety in medical uses of ionizing radiation. Vienna: IAEA. (Safety Standards Series no. SSG-46).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23e0df1c-ab6e-4188-bcbe-6bc48adae80d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.