PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Multivariate statistical analysis and geospatial approach for evaluating hydro geochemical characteristics of meltwater from Shaune Garang glacier, Himachal Pradesh, India

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focuses on the hydro-geochemistry of Shaune Garang glacier’s meltwater concerning glacial geomorphology. Seventy-nine water samples (53 in 2016 and 26 in 2017) of ablation season were analysed. The cations were dominant in the order Ca2+ > Mg2+ > Na+ > K+, and the anions in the order HCO3- > SO4 2- > Cl- > NO3-. The result demonstrated that HCO3 - were the abundant ions, accounting for 41.03 and 34.84% of the total ionic budget (TZ). The high ionic proportions of (Ca2+ + Mg2+) versus TZ+ and (Ca2+ + Mg2+) versus (Na+ + K+) were identified as the primary factors influencing dissolved ion chemistry in meltwater. Piper diagram shows that Ca2+–HCO3- type water is the most common, followed by Mg2+–HCO3-. In addition, a remote sensing approach has been used to find the possible source of the chemical constituents in the meltwater. The catchment geology has been mapped on various scales, including diverse rocks and unconsolidated surface materials containing “quartz and carbonate minerals”. Layered silicates (LS) and “hydroxyl-bearing minerals” are not as common as they used to be, but their availability varies greatly in the area where they are found. The distribution of LS minerals within the catchment are majorly found at lower altitudes, which implies the weathering mechanism due to the interaction of meltwater and parental rock. Multivariate analysis revealed that CO3 and SiO3 weathering, sulphate dissolution, and pyrite oxidation dominate dissolved ion concentrations. Chemometric analysis of meltwater hydro-geochemistry through principal component analysis explains 72.1% of the total variance of four PCs. PCs 1, 2, 3, and 4 explain 39.21%, 12.91%, 10.24%, and 9.74% of variance, respectively, in 2016. Similarly, in 2017, four PCs explain 69.91% of the total variance. PC 1, 2, 3, and 4 can explain 26.62%, 20.12%, 12.64%, and 10.52% of variance.
Czasopismo
Rocznik
Strony
323--339
Opis fizyczny
Bibliogr. 70 poz.
Twórcy
autor
  • Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, India
autor
  • Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, India
  • School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
autor
  • Department of Environmental Science, School of Earth Sciences, Central University of Rajasthan, Bandar Sindri, Ajmer, India
  • School of Geosciences, University of Aberdeen, Aberdeen AB24 3UE, UK
  • Environmental Biology Laboratory, Department of Zoology, Patna University, Patna, India
  • Environmental Biology Laboratory, Department of Zoology, Patna University, Patna, India
Bibliografia
  • 1. Abrams MJ, Brown D, Lepley L, Sadowski R (1983) Remote sensing for porphyry copper deposits in southern Arizona. Econ Geol 78(4):591–604. https://doi.org/10.2113/gsecongeo.78.4.591
  • 2. APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association, p 1220
  • 3. Bishwakarma K, Pant RR, Pal KB, Ghimire A, Thapa LB, Saud P, Joshi S, Panthi KP (2019) Water quality and land use/cover changes in the Phewa Watershed, Gandaki Province, Nepal. Nepal J Environ Sci 7:31–39. https://doi.org/10.3126/njes.v7i0.34473
  • 4. Bolch T, Kulkarni AV, Kääb A, Huggel C, Paul F, Cogley JG, Frey H, Kargel JS, Fujita K, Scheel M, Bajracharya S, Stoffel M (2012) The state and fate of Himalayan glaciers. Science 336(6079):310–314. https://doi.org/10.1126/science.1215828
  • 5. Bolch T, Shea JM, Liu S, Azam FM, Gao Y, Gruber S et al (2019) Status and change of the cryosphere in the extended Hindu Kush Himalaya Region. In: Wester P, Mishra A, Mukherji A, Shrestha A (eds) The Hindu Kush Himalaya assessment. Springer, Cham. https://doi.org/10.1007/978-3-319-92288-1_7
  • 6. Brown GH, Sharp MJ, Tranter M, Gurnell AM, Nienow PW (1994) The impact of post-mixing chemical reactions on the major ion chemistry of bulk meltwaters draining the Haut Glacier d’Arolla, Valais, Switzerland. Hydrol Process 8:465–480. https://doi.org/10.1002/hyp.3360080509
  • 7. Chidambaram S, Karmegam U, Prasanna MV, Sasidhar P, Vasanthavigar M (2011) A study on the hydro-chemical elucidation of coastal groundwater in and around Kalpakkam region, Southern India. Environ Earth Sci 64(5):1419–1431. https://doi.org/10.1007/s12665-011-0966-3
  • 8. Collins DN (1979) Hydrochemistry of meltwaters draining from an alpine glacier. Arct Alp Res 11(3):307. https://doi.org/10.2307/1550419
  • 9. Das BK, Kaur P (2001) Major ion chemistry of Renuka Lake and weathering processes, Simaur District, Himachal Pradesh, India. Environ Geol 40:908–917. https://doi.org/10.1007/s002540100268
  • 10. Dimri AP (2004) Impact of horizontal model resolution and orography on the simulation of a western disturbance and its associated precipitation. Meteorol Appl 11:115–127. https://doi.org/10.1017/S1350482704001227
  • 11. Dutta S, Mujtaba SAI, Saini HS, Chunchekar R, Kumar P (2017) Geomorphic evolution of glacier-fed Baspa Valley, NW Himalaya: record of late quaternary climate change, monsoon dynamics and glacial fluctuations. In: Pant NC, Ravindra R, Srivastava D, Thompson LG (eds) The Himalayan cryosphere: past and present, Special Publications, vol 462. Geological Society, London. https://doi.org/10.1144/SP462.5
  • 12. Fu B, Chou X (1998) Thermal infrared spectra and TIMS imagery features of sedimentary rocks in the Kalpin Uplift, Tarim Basin, China. Geocarto Int 13:69–73. https://doi.org/10.1080/10106049809354630
  • 13. Gabr S, Ghulam A, Kusky T (2010) Detecting areas of high-potential gold mineralisation using ASTER data. Ore Geol Rev 38:59–69. https://doi.org/10.1016/j.oregeorev.2010.05.007
  • 14. Gabr SS, Hassan SM, Sadek MF (2015) Prospecting for new gold-bearing alteration zones at El-Hoteib area, South Eastern Desert, Egypt, using remote sensing data analysis. Ore Geol Rev 71:1–13. https://doi.org/10.1016/j.oregeorev.2015.04.021
  • 15. Gad S, Kusky T (2007) ASTER spectral ratioing for lithological mapping in the Arabian-Nubian shield, the Neoproterozoic Wadi Kid area, Sinai, Egypt. Gondwana Res 11(3):326–335. https://doi.org/10.1016/j.gr.2006.02.010
  • 16. Galy A, France-Lanord C (1999) Weathering processes in the GangesBrahmaputra basin and the riverine alkalinity budget. Chem Geol 159:31–60. https://doi.org/10.1016/S0009-2541(99)00033-9
  • 17. Gibbs RJ (1970) Mechanisms controlling world water chemistry. Science 170:1088–1090. https://doi.org/10.1126/science.170.3962.1088
  • 18. Han H, Liu S, Wang J, Wang Q, Xie C (2010) Glacial runoff characteristics of the Koxkar Glacier, Tuomuer-Khan Tengri Mountain Ranges, China. Environ Earth Sci 61:665–674. https://doi.org/10.1007/s12665-009-0378-9
  • 19. Haritashya UK, Kumar A, Singh P (2010) Particle size characteristics of suspended sediment transported in meltwater from the Gangotri Glacier, central Himalaya—an indicator of subglacial sediment evacuation. Geomorphology 122(1–2):140–152. https://doi.org/10.1016/j.geomorph.2010.06.006
  • 20. Immerzeel WW, Lutz AF, Andrade M, Bahl A, Biemans H, Bolch T, Hyde S, Brumby S, Davies BJ, Elmore AC, Emmer A, Feng M, Fernández A, Haritashya U, Kargel JS, Koppes M, Kraaijenbrink PDA, Kulkarni AV, Mayewski PA, Nepal S, Pacheco P, Painter TH, Pellicciotti F, Rajaram H, Rupper S, Sinisalo A, Shrestha AB, Viviroli D, Wada Y, Xiao C, Yao T, Baillie JEM (2020) Importance and vulnerability of the world’s water towers. Nature 2020(577):364–369
  • 21. Jeelani GH, Bhat NA, Shivanna K, Bhat MY (2011) Geochemical characterisation of surface water and spring water in SE Kashmir Valley, western Himalaya: implications to water–rock interaction. J Earth Syst Sci 120(5):921–932
  • 22. Karim A, Veizer J (2000) Weathering processes in the Indus River Basin: implications from riverine carbon, sulfur, oxygen, and strontium isotopes. Chem Geol 170:153–177
  • 23. Kaser G, Grobhauser M, Marzeion B (2010) Contribution potential of glaciers to water availability in different climate regimes. Proc Natl Acad Sci USA 107(47):20223–20227. https://doi.org/10.1073/pnas.1008162107
  • 24. Khadka UR, Ramanathan AL (2012) Major ion composition and seasonal variation in the Lesser Himalayan lake: case of Begnas Lake of the Pokhara Valley, Nepal. Arab J Geosci 6:4191–4206. https://doi.org/10.1007/s12517-012-0677-4
  • 25. Kumar A, Singh CK (2015) Characterisation of hydro geochemical processes and fluoride enrichment in groundwater of South-Western Punjab. Water Qual Expo Health 7(3):373–387. https://doi.org/10.1007/s12403-015-0157-7
  • 26. Kumar K, Miral MS, Joshi S, Pant N, Joshi V, Joshi LM (2009) Solute dynamics of meltwater of Gangotri glacier, Garhwal Himalaya, India. Environ Geol 58:1151–1159. https://doi.org/10.1007/s00254-008-1592-6
  • 27. Kumar A, Verma A, Dobhal DP, Mehta M, Kesarwani K (2014) Climatic control on extreme sediment transfer from Dokriani Glacier during monsoon, Garhwal Himalaya (India). J Earth Syst Sci 123:109–120. https://doi.org/10.1007/s12040-013-0375-y
  • 28. Kumar R, Singh S, Kumar R, Singh A, Bhardwaj A, Sam L, Randhawa SS, Gupta A (2016) Development of a Glacio hydrological model for discharge and mass balance reconstruction. J Water Resour Manag. https://doi.org/10.1007/s11269-016-1364-0
  • 29. Kumar R, Kumar R, Singh A, Sinha RK, Kumari A (2018a) Nanoparticles in glacial meltwater. Mater Today Proc 5(3P1):9161–9166. https://doi.org/10.1016/j.matpr.2017.10.037
  • 30. Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Kumari A, Randhawa SS, Saha A (2018b) Dynamics of suspended sediment load with respect to summer discharge and temperatures in Shaune Garang glacierised catchment, Western Himalaya. Acta Geophys. https://doi.org/10.1007/s11600-018-0184-4
  • 31. Kumar R, Kumar R, Singh A, Singh S, Bhardwaj A, Kumari A, Sinha RK, Gupta A (2019a) Hydro-geochemical analysis of meltwater draining from Bilare Banga glacier, Western Himalaya. Acta Geophys 67:651. https://doi.org/10.1007/s11600-019-00262-w
  • 32. Kumar R, Kumar R, Singh A, Sinha RK, Kumari A, Gupta A, Singh J (2019b) Distribution of trace metal in Shaune Garang catchment: evidence from particles and nanoparticles. Mater Today Proc 15(3):586–594. https://doi.org/10.1016/j.matpr.2019.04.125
  • 33. Kumar R, Kumar R, Singh S, Singh A, Bhardwaj A, Chaudhary H (2019c) Hydro-geochemical characteristics of glacial meltwater from Naradu Glacier catchment, Western Himalaya. Environ Earth Sci 78:683. https://doi.org/10.1007/s12665-019-8687-0
  • 34. Kumar S, Rai H, Purohit KK, Rawat BRS, Mundepi AK(1987) Chhota Shigri glacier. Technical Report 1. Department of Science and Technology, New Delhi, pp 1–29
  • 35. Mather PM (1987) Computer processing of remotely sensed images. An introduction, 1st edn. Wiley, Chichester
  • 36. Mortatti J, Probst JL (2003) Silicate rock weathering and atmospheric/soil CO2 uptake in the Amazon basin estimated from river water geochemistry: seasonal and spatial variations. Chem Geol 197:177–196. https://doi.org/10.1016/S0009-2541(02)00349-2
  • 37. Ninomiya Y (2004) Lithologic mapping with multispectral ASTER TIR and SWIR data. Proc SPIE 5234:180–190. https://doi.org/10.1117/12.511902
  • 38. Pant RR, Bishwakarma K, Basnet BB, Pal KB, Karki L, Dhital YP, Bhatta YR, Pant BR, Thapa LB (2021a) Distribution and risk appraisal of dissolved trace elements in Begnas Lake and Rupa Lake, Gandaki Province, Nepal. SN Appl Sci 3:1–13. https://doi.org/10.1007/s42452-021-04516-5
  • 39. Pant RR, Qaiser FUR, Wang G, Adhikari S, Bishwakarma K, Baral U, Rimal B, Bhatta YR, Rijal K (2021b) Hydrochemical appraisal and solute acquisitions in Seti River Basin, Central Himalaya, Nepal. Environ Monit Assess 193:656. https://doi.org/10.1007/s10661-021-09437-9
  • 40. Piper AM (1944) A graphic procedure in the geochemical interpretation of water analyses. EOS Trans Am Geophys Union 25(6):914–928. https://doi.org/10.1029/TR025i006p00914
  • 41. Prasanna MV, Chidambaram S, Srinivasamoorthy K (2010) Statistical analysis of the hydro geochemical evolution of groundwater in hard and sedimentary aquifers system of Gadilam river basin, South India. J King Saud Univ Sci 22:133–145. https://doi.org/10.1016/j.jksus.2010.04.001
  • 42. Quinton WL, Pomeroy JW (2006) Transformations of runoff chemistry in the Arctic tundra, Northwest Territories, Canada. Hydrol Process 20:2901–2919. https://doi.org/10.1002/hyp.6083
  • 43. Ravikumar P, Somashekar RK (2017) Principal component analysis and hydro-chemical facies characterisation to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Appl Water Sci 7:745–755. https://doi.org/10.1007/s13201-015-0287-x
  • 44. Rowan LC, Mars JC (2003) Lithologic mapping in the Mountain Pass, California area using advanced spaceborne thermal emission and reflection radiometer (ASTER) data. Remote Sens Environ 84(3):350–366. https://doi.org/10.1016/S0034-4257(02)00127-X
  • 45. Sabins FF (1999) Remote sensing for mineral exploration. Ore Geol Rev 14(3):157–183. https://doi.org/10.1016/S0169-1368(99)00007-4
  • 46. Sadashivaiah C, Ramakrishnaiah CR, Ranganna G (2008) Hydrochemical analysis and evaluation of groundwater quality in Tumkur Taluk, Karnataka State, India. Int J Environ Res Public Health 5(3):158–164. https://doi.org/10.3390/ijerph5030158
  • 47. Salisbury JW, D’Aria DM (1992) Emissivity of terrestrial materials in the 8–14 μm atmospheric window. Remote Sens Environ 42(2):83–106. https://doi.org/10.1016/0034-4257(92)90092-X
  • 48. Sharma P, Ramanathan AL, Pottakkal J (2013a) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri Glacier meltwaters, Himachal Himalaya, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092
  • 49. Sharma P, Ramanathan AL, Pottakkal JG (2013b) Study of solute sources and evolution of hydrogeochemical processes of the Chhota Shigri glacier meltwaters, Himachal Pradesh, India. Hydrol Sci J 58(5):1128–1143. https://doi.org/10.1080/02626667.2013.802092
  • 50. Singh VB, Ramanathan AL (2017) Hydro-geochemistry of the Chhota Shigri glacier meltwater, Chandra basin, Himachal Pradesh, India: solute acquisition processes, dissolved load, and chemical weathering rates. Environ Earth Sci 76:223. https://doi.org/10.1007/s12665-017-6465-4
  • 51. Singh P, Haritashya UK, Kumar N (2008) Modelling and estimation of different components of streamflow for Gangotri Glacier basin, Himalayas. Hydrol Sci J 53(2):309–322. https://doi.org/10.1623/hysj.53.2.309
  • 52. Singh VB, Ramanathan AL, Kuriakose T (2015) Hydrogeochemical assessment of meltwater quality using major ion chemistry: a case study of Bara Shigri glacier, Western Himalaya, India. Natl Acad Sci Lett 38(2):147–151. https://doi.org/10.1007/s40009-014-0310-z
  • 53. Singh S, Kumar R, Bhardwaj A, Sam L, Shekhar M, Singh A, Kumar R, Gupta A (2016) Changing climate and glacio-hydrology in Indian Himalayan region: a review. Wiley Interdiscip Rev Clim Chang 7(3):393–410. https://doi.org/10.1002/wcc.39
  • 54. Singh CK, Kumar A, Shashtri S, Kumar A, Kumar P, Mallick J (2017) Multivariate statistical analysis and geochemical modeling for geochemical assessment of groundwater of Delhi, India. J Geochem Explor 175:59–71. https://doi.org/10.1016/j.gexplo.2017.01.001
  • 55. Singh S, Kumar R, Bhardwaj A, Kumar R, Singh A (2018) Changing climate and glacio-hydrology: a case study of Shaune Garang basin, Himachal Pradesh. Int J Hydrol Sci Technol. https://doi.org/10.1504/IJHST.2018.10010353
  • 56. Singh R, Kumar R, Bahuguna IM, Kumar R (2020) Grain size analysis of Dune and Bar sediments of the Shyok River between Khalsar and Hunder Village, Karakoram Range, Ladakh, India. J Geol Soc India 95:183–189. https://doi.org/10.1007/s12594-020-1408-1
  • 57. Singh R, Kumar R, Latief SU, Kumar R, Shekhar M (2022) Recession of Gaglu Glacier, Chandra Basin, Western Indian Himalaya. In: Rani S, Kumar R (eds) Climate change. Springer climate. Springer, Cham. https://doi.org/10.1007/978-3-030-92782-0_5
  • 58. Srinivasamoorthy K, Chidambaram S, Prasanna MV (2008) Identification of major sources controlling groundwater chemistry from a hard rock terrain—a case study from Mettur taluk, Salem district, Tamilnadu, India. J Earth Syst Sci 117(1):49–58. https://doi.org/10.1007/s12040-008-0012-3
  • 59. Tangestani MH, Jaffari L, Vincent RK, Sridhar BM (2011) Spectral characterisation and ASTER-based lithological mapping of an ophiolite complex: a case study from Neyriz ophiolite, SW Iran. Remote Sens Environ 115(9):2243–2254. https://doi.org/10.1016/j.rse.2011.04.023
  • 60. Thakur N, Rishi M, Keesari T, Sharma DA, Sinha UK (2019) Assessment of recharge source to springs in upper Beas basin of Kullu region, Himachal Pradesh, India using isotopic signatures. J Radioanal Nucl Chem 1:9. https://doi.org/10.1007/s10967-019-06617-3
  • 61. Thapa B, Pant RR, Thakuri S, Pond G (2020) Assessment of spring water quality in Jhimruk River Watershed, Lesser Himalaya, Nepal. Environ Earth Sci 79:1–14. https://doi.org/10.1007/s12665-020-09252-4
  • 62. Thomas J, Joseph S, Thrivikramji KP (2015) Hydrochemical variations of a tropical mountain river system in a rain shadow region of the southern Western Ghats, Kerala, India. Appl Geochem 63:456–471. https://doi.org/10.1016/j.apgeochem.2015.03.018
  • 63. Tiwari PC, Tiwari A, Joshi B (2018) Urban growth in Himalaya: understanding the process and options for sustainable development. J Urban Region Stud Contemp India 4(2):15–27. https://doi.org/10.15027/45582
  • 64. Todd DK (2001) Groundwater hydrology. Wiley, Hoboken
  • 65. Tranter M, Brown G, Raiswell R, Sharp M, Gurnell A (1993) A conceptual model of solute acquisition by alpine glacier meltwaters. J Glaciol 39:573–581. https://doi.org/10.3189/S0022143000016464
  • 66. Van der Meer FD, Van der Werff HM, van Ruitenbeek FJ, Hecker CA, Bakker WH, Noomen MF, Woldai T (2012) Multi-and hyperspectral geologic remote sensing: a review. Int J Appl Earth Obs Geoinf 14(1):112–128. https://doi.org/10.1016/j.jag.2011.08.002
  • 67. Wood LR, Neumann K, Nicholson KN, Bird BW, Dowling CB, Sharma S (2020) Melting Himalayan Glaciers threaten domestic water resources in the Mount Everest region, Nepal. Front Earth Sci 8:128. https://doi.org/10.3389/feart.2020.00128
  • 68. Wulf H, Bookhagen B, Scherler D (2010) Seasonal precipitation gradients and their impact on fluvial sediment flux in the Northwest Himalaya. Geomorphology 118:13–21. https://doi.org/10.1016/j.geomorph.2009.12.003
  • 69. Xing L, Guom H, Zhan Y (2013) Groundwater hydro-chemical characteristics and processes along flow paths in the North China Plain. J Asian Earth Sci 70–71:250–264. https://doi.org/10.1016/j.jseaes.2013.03.017
  • 70. Yakubo BB, Yidana SM, Nti E (2009) Hydrochemical analysis of groundwater using multivariate statistical methods—the Volta region, Ghana. KSCE J Civ Eng 13(1):55–63. https://doi.org/10.1007/s12205-009-0055-2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23dad681-662a-4552-8776-c145911bb4cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.