Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
A retrospective study on accident analysis of the United States mines for 36 years was achieved using statistical analysis on the MSHA's accident databases between 1983 and 2018. A regression model of generalized estimation equation (GEE) was used for unbalanced panel data that provided 95,812 observations for 19,924 mine-ID-year in aggregate, coal, metal, and non-metal mines. The contributions of various parameters, including mine type, injured body part, days lost, age, and experience on the rate of accidents and injuries were investigated across the commodity types. The results showed coal miners in the East region are at a higher risk of accident. The results of regression analysis show that mine-tenured workers have a vital role in accident frequencies. Analysis of the injured body part on the injury rate indicates that the upper body injuries are the most significant among all mine types. Also, the fatality rate is significant in aggregate, and coal mines in comparison with metal and non-metal mines.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--44
Opis fizyczny
Bibliogr. 27 poz.
Twórcy
autor
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA and John and Willie Leone Family Department of Energy and Mineral Engineering, University Park, The Pennsylvania State University, State College, PA, USA
autor
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA and John and Willie Leone Family Department of Energy and Mineral Engineering, University Park, The Pennsylvania State University, State College, PA, USA
autor
- Department of Information Systems, Business School, University of Colorado Denver, Denver, CO, USA
autor
- Department of Mineral Engineering, New Mexico Institute of Mining and Technology, Socorro, NM, USA
Bibliografia
- [1] United States Geological Survey (USGS). U.S. mines produced an estimated $82.2 billion in minerals during 2018 [internet]. U.S. Department of the Interior, USGS; 2019.Retrieved from: https://www.usgs.gov/news/national-news-release/us-mines-produced-estimated-822-billion-minerals-during-2018/retrieved.
- [2] Asfawa A, Mark C, Pana-Cryan R. Profitability and occupational injuries in U.S. underground coal mines. Accid Anal Prev 2013;50:778-86. https://doi:10.1016/j.aap.2012.07.002.
- [3] Duarte J, Baptista JS, Marques AT. Occupational accidents in the mining industry - a short review. Occup EnvironSaf Healt 2019;202:61-9. https://doi.org/10.1007/978-3-030-14730-3_7.
- [4] Zhang M, Kecojevic V, Komljenovic D. Investigation of haul truck-related fatal accidents in surface mining using fault tree analysis. Saf Sci 2014;65:106-17. https://doi:10.1016/j.ssci.2014.01.005.
- [5] Dindarloo SR, Pollard J, Siami-Irdemoos E. Off-road truck-related accidents in US mines. J Saf Res 2016;58:79-87.https://doi.org/10.1016/j.jsr.2016.07.002.
- [6] Noll J, DeGennaro C, Carr J, DuCarme J, Homce G. Causal factor of collision accidents involving underground coal mobile equipment. In: Proceedings of the ASME 2017 International Mechanical Engineering Congress and Exposition. Tampa, Florida: IMECE, 2017; 2017. https://doi.org/10.1115/IMEC-2017-70714.
- [7] Nasarwanji MF, Pollard J, Porter W. An analysis of injuries to front-end loader operators during ingress and egress. Int J Industr Ergon 2017;65:84-92. https://doi.org/10.1016/j.ergon.2017.07.006.
- [8] Ruff T, Coleman P, Martini L. Machine-related injuries in the US mining industry and priorities for safety research. Int J Inj Control Saf Promot 2011;18(1):11-20. https://doi:10.1080/17457300.2010.487154.
- [9] Javadi M, Saeedi G, Shahriar K. Developing a new probabilistic approach for risk analysis, application in underground coal mining. J Fail Anal Prev 2017;17(5):989-1010.https://doi.org/10.1007/s11668-017-0325-0.
- [10] Mark C, Pappas DM, Barczak TM. Current trends in reducing ground fall accidents in U.S. coal mines. Min Eng 2011;63(1):60-5. Retrieved from: https://www.cdc.gov/niosh/mining%5C/UserFiles/works/pdfs/ctirgf.pdf/retrieved.
- [11] Groves WA, Kecojevic VJ, Komljenovic D. Analysis of fatalities and injuries involving mining equipment. J Saf Res 2007;38:461-70. https://doi.org/10.1016/j.jsr.2007.03.011.
- [12] Sammarco JJ, Podlesny A, Rubinstein EN, Demich B. An analysis of roof bolter fatalities and injuries in U.S. mining. Trans Soc Min Metall Explor 2016;340(1):11-20. https://doi:10.19150/trans.7322.
- [13] Moore SM, Porter WL, Dempsey PG. Fall from equipment injuries in U.S. mining: identification of specific research areas for future investigation. J Saf Res 2009;40(6):455-60.https://doi.org/10.1016/j.jsr.2009.10.002.
- [14] Santos BR, Porter WL, Mayton AG. An analysis of injuries to haul truck operators in the U.S. Mining industry. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting; 2010. p. 1870-4. 54(21).
- [15] Pollard J, Heberger J, Dempsey PG. Maintenance and repair injuries in US mining. J Qual Mainten Eng 2014;20(1):20-31.https://doi.org/10.1108/JQME-02-2013-0008.
- [16] Alessa FM, Nimbarte AD, Sosa EM. Incidences and severity of wrist, hand, and finger injuries in the U.S. mining industry. Saf Sci 2020;129:-104792. https://doi:10.1016/j.ssci.2020.104792.
- [17] Mine safety and health administration (MSHA). Mission Washington, DC: United States Department of Labor; 2016 [internet], https://www.msha.gov/about/mission.
- [18] Wooldridge JM. Econometric analysis of cross-section and panel data. MIT press; 2010.
- [19] Shekarian N, Ramirez Ronald, Khuntia J. The impact of data analytics on hospital performance. AMCIS 2020. Proceedings3, https://aisel.aisnet.org/amcis2020/data_science_analytics_for_decision_support/data_science_analytics_for_decision_support/3.
- [20] Schall R. Estimation in generalized linear models with random effects. Biometrika 1991;78(4):719-27. https://doi.org/10.2307/2336923.
- [21] Diggle P, Heagerty P, Liang KY, Zeger S. Analysis of longitudinal data. Oxford University Press; 2002.
- [22] Fitzmaurice GM, Laird NM, Ware JH. Applied longitudinal analysis. Hoboken: John Wiley & Sons; 2004.
- [23] Shekarian Y, Rahimi E, Shekarian N, Rezaee M, Roghanchi P. An analysis of contributing mining factors in coal workers' pneumoconiosis prevalence in the United States coal mines, 1986-2018. Int J Coal Sci Technol 2021;8:1227-37. https://doi.org/10.1007/s40789-021-00464-y.
- [24] Rahimi E. Investigation of respirable coal mine dust (RCMD) and respirable crystalline silica (RCS) in the U.S. Underground and surface coal mines. New Mexico Institute of Mining and Technology; 2020. In PROQUESTMS: http://libproxy.uoregon.edu/login?url=https://www.proquest.com/dissertations-theses/investigation-respirable-coal-mine-dust-rcmd/docview/2468128535/se-2?accountid=14698.
- [25] Benfratello L. Random effects regression for panel data. In: Michalos AC, editor. Encyclopedia of quality of life and wellbeing research. Dordrecht: Springer; 2014. https://doi.org/10.1007/978-94-007-0753-5_2402.
- [26] Shekarian N, Ramirez R. Resilience through technology intensity and international related management experience: An explorative examination of European firms during the COVID-19 crisis. Digit 2021. Proceedings. https://aisel.aisnet.org/digit2021/.
- [27] Shekarian Y. An investigation of the effects of mining parameters on the prevalence of coal worker's pneumoconiosis (CWP) risks among the US coal miners. New Mexico Institute of Mining and Technology; 2020. https://doi.org/10.13140/RG.2.2.22358.27205. In PROQUESTMS: http://libproxy.uoregon.edu/login?url=https://www.proquest.com/dissertations-theses/investigation-effects-mining-parameters-on/docview/2467855260/se-2?accountid=14698.
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-23da5a17-1187-4713-8fc8-f0ed5f218549